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Abstract
This paper describes a detection method that adapts to unknown characteristics of the underlying transient signal, such as 
location, length, and time-frequency content. It applies a set of embedded detectors tuned to a number of signal partitions. 
The detectors are based on the general wavelet theory whereby two different techniques are examined, (1) the local Fourier 
transform (LFT) and  (2) the discrete wavelet transform (DWT). The detection statistics are computed so as to enable 
prewhitening of unknown coloured noise and to allow for a constant false-alarm rate (CFAR) detection.  An adapted 
segmentation of the signal is next obtained with a goal of finding the largest detection statistics within each segment of the 
partition. The detectors are tested using several underwater acoustic transient signals buried in ambient sea noise. 
Introduction 
Early detection in underwater acoustics is usually 
accomplished by using short-duration acoustic 
emissions, or transients, inadvertently emitted by the 
target. Typical duration of a transient ranges from few 
tens of milliseconds to several seconds.  Signals are 
embedded in additive noise and the goal of the detection 
process is to determine whether the observations belong 
to a stationary noise distribution or not. For the detection 
problem treated in this paper it is assumed that the shape, 
length and location of the signals are not known. 

Reference [1] describes several transient detectors that 
use the discrete Fourier transform (DFT) and the discrete 
wavelet transform (DWT) [2]. These detectors enable 
prewhitening of unknown correlated (coloured) noise 
and allow for a constant false-alarm rate (CFAR) 
detection. These properties are desirable for the passive 
sonar detection where the background noise is usually 
correlated and its statistics may change over time. 
However, a shortcoming of these detectors is that they 
use windowed signals where the length of the analysing 
window is fixed. These techniques perform well when 
the length of the analysing window is matched to the 
length of the transient, but when the window length is 
large as compared to that of the signal the performance 
of the detector deteriorates. By contrast, it is assumed 
that detection performance can be considerably improved 
by segmenting the signal into parts and by using the 
detection statistics related only to those segments that are 
characterised by large transform coefficients. The 
detection process in this way adjusts to the local 
characteristics of the signal.  

Adaptive Transient Detectors 
Similarly as in [1] the incoming data stream is divided 
into blocks of length N. The L+1 consecutive data blocks 
are considered where the (L+1)th block is the current 
block. The L previous data blocks are assumed to be 
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blocks are processed by using either the local 

ier transform (LFT) [3],[4] or the DWT [2], 
ting in two somewhat different adaptive detection 
edures. 

LFT-Based Detectors  
LFT provides a means for expanding a signal into a 
of smooth orthonormal bases subordinate to an 
rary partition (segmentation) of the signal. The bases 
ist of complex exponential function smoothly 
icted to adjacent overlapping segments. The bases 
local’ in the sense that they expand the signal only 
in the particular region of interest. Starting with a 
tion of the signal into disjoint intervals R = k Ik = 

k+1) (see for example Figure 1) the method uses the 
th orthogonal periodisation [3]. It first performs 
owing of the original signal using smooth 
lapping compactly supported bump functions or 
ows placed over each interval. This is followed by 
ng the windowed segments to the disjoint intervals. 
 interval is next locally periodised and separately 
essed using the standard discrete Fourier transform 
). The method ensures that the resulting basis set is 
normal for L2(R). Also, the signal decomposition is 

redundant, that is the number of (complex) 
form coefficients is the same as the length of the 
l. Since the basis functions are smooth, no 
ntinuity is created at the segment endpoints. 

LFT is applied to a binary tree structured set of 
vals yielding a redundant M-level signal 
mposition (see Figure 2, also in [3]). The length of 
egment at the lowest decomposition level (m=0) is 
ic N=2K and equals to the block-length of the 
sed signal. The intervals at the higher decomposition 
s m=1,2,…,M-1 are obtained by recursively splitting 
egments at lower levels at the mid-point. In this way, 
ach level m=0,1,…,M-1 there are 2m segments of 
th 2(K-m). The maximum number of decomposition 
s is M<=K and M is chosen with respect to the 
lest length of the signal segments of interest. Note 
the LFT coefficients can be taken to represent disjoint 



intervals, since the overlap of the windowed segments can
be made relatively small (only a few samples).

I0 I1 I2 I3 I4
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Figure 1. Partition of line and the corresponding
windows for smooth localised orthonormal basis.

We compute detection statistics for each segment
q=1,2,…,2m at levels m=0,1,…, M-1 within the binary
tree. L previous data-blocks are used to estimate the
background statistics for normalisation. These L blocks
are also processed using the M-level LFT. Consider the
q-th segment at the m-th level of decomposition that
belongs to the i-th data block, i=1,2,…,L+1. Then define
U(1)

m,q,j,i = Xm,q,j,i and U(2)
m,q,j,i = Xm,q,j-1,i+Xm,q,j,i where

Xm,q,j,i, j =1,2,…,2(K-m) is the j-th magnitude squared
transform coefficient within this segment. Two detection
statistics TF(n)

m,q for n=1,2 are then defined by
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At the level of decomposition m=0 there are L
background segments that are used for normalisation.
The statistics computed at this level, TF(n)

0,1, n=1,2, are
the same as  those defined in reference [1] for the block-
length 2K. At the level m, m=1,2,…,M-1, there are 2mL
background segments from L previous blocks, for
i=1,2,…,L and for q=1,2,…, 2m. These segments are 
used to compute detection statistics in all 2m segments at 
the m-th binary tree level of the current (L+1)-th block.

The normalisation of each component carried out in Eq.
(1) prewhitens correlated noise and allows for CFAR
detection performance. The detection statistics TF(2)

m,q is
defined such as to exploit signal contiguity in the
frequency domain. Namely, a transient signal is usually
bandpass and it is reasonable to expect that most of its 
energy will be spread over a contiguous band in the
frequency domain.

The exponent  in Eq. (1) is an adjustable parameter.

The intention is to find those segments in the binary tree 
structure that have the largest values of the detection
statistics, as this indicates that these segments are best
matched by their basis functions. In order to be able to
compare the values of TF(n)

m,q they need to be further
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nces of the TF(n)

m,q estimated in the noise-only case. 
TF(n)

m,q for each segment are computed as sums of 
om variables (rv's) and in the noise-only case their
ibution depends on the number of the rv's used in the 

ation (that is, on the length of the underlying
ent). So under the assumption that noise has a
nary distribution the noise-only TF(n)

m,q's related to
egments at the decomposition level m have identical
ibutions, and their distribution varies across different
s. Using the central limit theorem Wang and Willet
assume that these detection statistics converge to
al distributions and provide formulae for calculating
s and variances of these distributions. In our 

riments using real sea noises it was found that these
ulae do not estimate means and variances of the 
tion statistics across the different levels of

ibution very accurately. The probable reason is that
ormal distribution assumption is usually not correct
the formulae are computed using approximations
ay. Therefore, in this paper means and variance

 for normalisation of the detection statistics TF(n)
m,q,

2, for all segments q=1,2,…,2m  at the levels
,1,…, M-1 of the binary tree are estimated using a
ciently long noise-only section of the input data
m.

igure 2. Organisation of localisation intervals 
nto a binary tree. 

DWT-Based Detectors 
now describe a method for computing a nested 

ry tree-structured set of detectors based on the DWT.  
e the incoming data stream is assumed to be very 
, the DWT is defined as applied to a doubly infinite 
t sequence [3]. In particular, DWT is computed for 
rate data blocks where the initial conditions for 
essing the current block are obtained by carrying 
 the information resulting from processing the 
ediately preceding data block. Consider a full (K 
-levels) DWT of the block of length 2K (high-pass 

ficients) computed in this way. This DWT contains 
in itself the full DWT's of the entire binary tree 
tured set of intervals obtained by recursive mid-
t splitting of the lower level segments. As an 



example, Figure 3 shows the DWT coefficients for the
block-length 32. It can be seen that this DWT contains
the DWT's of the 4 successive intervals of length 8 at the
level m=2 of the binary tree structure, and the DWT's of
the 2 intervals of length 16 at the level m=1. The
coefficients of these DWT's are grouped as shown in the
figure. Consequently, the DWT coefficients of the nested
set of intervals within the binary tree can be obtained
simply by rearranging the DWT coefficients computed at
the lowest level of the structure, that is, for m=0.

k=2

k=3

k=4

k=5

k=1

Figure 3. Organisation of the DWT coefficients of
localisation intervals into a binary tree. Here k
denotes the levels of the DWT decomposition.

We compute the detection statistics using the DWT 
coefficient within each segment q=1,2,…,2m at levels
m=0,1,…, M-1 of the binary tree related to the current
data block. It is assumed that we also have the DWT
coefficients of the L immediately preceding noise-only
data blocks. Consider the q-th segment at the m-th level
of the i-th data-block, i=1,2,…, L+1. Then let Ym,q,k,j,i

denote the magnitude-squared DWT coefficient 
computed for the data within this segment, where
k=1,2,…,K-m  denotes the DWT scale index and j = 1,2,
…, 2(K-k-m) is the within-scale time index. Next define
U(1)

m,q,k,j,i = Ym,q,k,j,i and U(2)
m,q,k,j,i =Ym,q,k,j,i+Ym,q,k-1,2j-

1,i+Ym,q,k-1,2j,i for k =P(n)
m,…,K-m,    j =1,2,…,2(K-k-m), and 

P(1)
m = 1 and P(2)

m = 2. The detection statistics TW(n)
m,q

are then given by

mK

Pk j
L

i p

n
ijkpmm

n
Ljkqmn

qm
n

m

mkK

m

U
L

U
TW

)(

)(2

1

1

2

1

)(
,,,,

)(
1,,,,)(

,

2
1

(2)

for n=1,2. Here, similarly as in the previous in section,
the statistics are computed using the normalised wavelet
coefficients, and TW(2)

m,q is defined such as to exploit
contiguity of transient signals in the spatial-frequency
domain. The rationale for defining the statistics TW(2)

m,q

is that a transient signal can be expected to have
components that are large over a contiguous band in both
time and frequency domains. Also, the detection
statistics TW(n)

m,q n=1,2 computed at the level m=0 are
equivalent to those defined reference [1].
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detection statistics computed in this way are again 
alised for each decomposition level m=0,1,…,M-1 
 to have  zero mean and unit variance. This is done 
 the means and standard deviations estimated based 

 noise-only section of the input data stream. 

isadvantage of the standard  (critically sampled) 
 is that it is non-invariant to time-shifts of the 
sed signal. The input-signal shifts can generate 

edictable changes in the DWT coefficients that can 
e a degradation of the performance of the detectors. 
ral techniques using best-basis or optimal wavelet 
ns have been proposed to reduce DWT shift 

itivity [5]. An alternative approach is to use complex 
lets to compute the DWT, with the real and 
inary parts of the complex wavelet constituting a 
ert transform pair. It is argued that, if a transient is 
nt, the real and imaginary part of the complex 
form coefficients cannot simultaneously be small 
the magnitude of the coefficients should be used for 
tion [6]. Recently Fernandes [7] proposed a linear 
ction filter that projects a real-valued signal onto the 

ty’ space. The filter has the pass-band over over 
 and stop-band over [- ,0] so that it retains positive 
encies and suppresses negative frequencies. The 
ard DWT is applied to the projected (complex) 

t signal obtained in this way and as the result 
plex wavelet coefficients are generated [7]. This 
ction-based complex DWT is applied to compute 
WT coefficients in this section. 

pted Signal Partition 
processing described in the previous sections results 
 set of detectors associated with the binary tree 
ture of intervals Im,q in Figure 2. We seek the 
tion (segmentation) Imi,qi of the current block 
icted to Im,q, such that Imi,qi exhaustively covers the 
k-length 2K without overlapping, and provides the 
st values of the resulting detection statistics. Let 

denote the normalised detection statistics 
pective of the method used for its computation (i.e.,
ined using either  Eq. (1) or Eq. (2)). Set Jm,q to the 
 refined partition in the binary tree structure,       JM-

IM-1,q, q=1,2,…,2M-1, and, also, set m,q = Tm,q. Then 
ollowing  recursive search algorithm 

otherwiseJJ
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s the required partition J0,1= Imi,qi. Let {Tmi,qi} be 
set of detection statistics  associated with the 
tion Imi,qi. Then it can be shown that 

            )(max)(max ,,,, qmqmqmqm TT
iiii



that is, the segment for which the detection statistics is
maximal  over the entire binary tree structure is included
in the best signal partition obtained using Eq. (3).

We next assign the values from the set Tmi,qi to the
segments that correspond to the finest partition of the
binary tree  IM-1,q, q=1,2,…,2M-1 as follows. The
segments from the partition obtained using Eq. (3) that
belong to the set IM-1,q, that is for which mi=M-1, are
assigned their respective value  Tmi,qi. Each segment Imi,qi

for which mi<M-1 is recursively split into halves until
the highest level (M-1) is reached. To all intervals
obtained in this way the same value of the detection
statistics is assigned that is equal to the value
corresponding to their parent segment. As the result a 
temporal sequence of detection statistics of the length
2(M-1) is obtained. It characterises the underlying data
block and is used for transient detection. Namely, each 
value of the detection statistics from the sequence, t, is 
separately compared to a threshold . The probability
that t exceeds the threshold  for the noise-only data
(hypothesis H0) defines the probability of false alarm Pfa

whereas the probability that t>  when a transient signal 
is present in the data (hypothesis H1) is denoted as the
probability of detection Pd.

Detector Performance 
The performance of the LFT- and DWT-based detectors
is evaluated using two underwater acoustic transients
(see Figures 4 and 5). As can be seen the transients vary 
in their characteristics regarding both duration and
frequency content. A 40 minute long recording of
ambient sea noise is used as the background signal. This
signal is divided into blocks of length N=2048 samples
and the transients are inserted into these blocks at
different signal-to-noise ratios (SNR's). This is followed
by computing the detection statistics using an M=5 level
binary tree decomposition. It is assumed that, in some
cases, smaller parts of a transient signal may be better
matched by the transform basis functions than the entire
signal, and that detection performance can be improved
by using these segments. Therefore, the length of the
smallest segment in the binary tree, ie., the one that
corresponds to the highest decomposition level M-1,  is
set  to 128 samples, which is smaller than the length of
any of the tested transients. The starting position of a 
transient within a block is chosen such as not to coincide
with the beginning of any subinterval at any level of the
binary tree structure and to allow that the entire transient
is contained within the block.

The number of noise-only data blocks used in Eqs. (1)
and  (2) for background normalisation is set to L=10.
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Regarding the choice of the exponent  in Eqs. (1) and
(2) the study in [1] indicates that, for different block-
lengths N and output signal-to-noise ratios (SNR's), and
under the assumption that the frequency characteristics
of the transient are not known, good  values are 1.5< <2.
In our experiments we obtain similar results for both the
LFT- and the DWT-based detectors. We therefore set

=1.7. Also, we tested several different wavelets with
different lengths of the associated filters and found that
the performance of the DWT-based detectors does not
depend much on the choice of wavelet. We use the Haar
wavelet. The reason for this choice is that the filter that
corresponds to the Haar wavelet is short, so that the
information carried over from one block of data to the
other in the processing of the on-line DWT is minimal.

In the experiments the total number of data blocks of
length N=2048 of the sea noise record is B=9600. For
both LFT- and DWT-based detectors we use the statistics
of the first 0.15B noise-only blocks to estimate means
and variances of the detection-statistics over different
decomposition levels of the binary tree. These estimates
are next used to normalise the detection statistics 
computed for the remaining 0.85B data blocks.

Probability of detection for the LFT- and DWT-based
detectors. In the experiments we have only one
occurrence of a transient in each data block. For this
reason a transient is considered detected if any of the
detection statistics from the temporal sequence obtained
using the best-adapted partition of the signal, restricted 
to the segments in which resides 90% of the transient
energy, is greater than a given threshold. The sequence.
The probability of detection is defined by

tot

d
d B

B
P

where Bd is the number of blocks in which a transient is 
detected and Btot is the total number of data blocks.

Probability of false alarm for the LFT- and DWT-based
detectors. False alarm is assumed to occur each time a 
detection statistics from the sequence resulting from the
best-adapted partition of a noise-only data block is larger
than the threshold. Therefore, the probability of false 
alarm is defined as 

tot
M

B

b
b

fa B

N
P

tot

1
1

2
where Nb is the number of values in this sequence that
are larger than  the threshold for the block b=1,2,…,Btot,
and M is the number of levels of the binary tree structure
of intervals.

We evaluated the performance of the LFT- and DWT-
based detectors for the transients used in this study and
compared it to the performance of the DFT- and DWT-
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048.  The corresponding detection statistics TF(n)
0,1

TW(n)
0,1 for n=1,2 are computed using the transform

ficients at the level m=0 of the binary tree structure 
r Eqs. (1) and (2) respectively.

res 6 and 7 show receiver operating characteristics
C) evaluated for a fixed SNR specific to each test 
ient where the detectors are denoted as follows. The
-based detectors are denoted by LFT-T1 for the
tion statistics TF(1)

m,q, and by LFT-T2 for  TF(2)
m,q

. (1), whereas the DWT-based detectors are denoted
WT-T1 and LWT-T2 for TW(1)

m,q and  TW(2)
m,q in

(2), respectively. The corresponding DFT-based
tors described in [1] are denoted by DFT-T1 and
-T2 for TF(1)

0,1 and TF(2)
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The results in Figures 6 and 7 indicate that adaptive 
window-length detectors perform better than the 
detectors described in [1] for the tested transients. Also, 
the adaptive window-length detectors using the DWT 
outperform the LFT-based detectors. For the test 
transient 1 the LWT-T1 detector gives somewhat better 
result that the one obtained using the detector LWT-T2, 
whereas, for the test transient 3, the detector LWT-T2 
performs better than the detector LWT-T1. 

Conclusions
This paper is concerned with the detection of acoustic 
underwater transients of unknown location, length, and 
time-frequency content. A method that applies a set of 
embedded transient detectors tuned to a number of signal 
partitions has been proposed. The detectors are based on 
the general wavelet theory whereby two different 
techniques are examined, the local Fourier transform and 
the discrete wavelet transform. The detection statistics 
are computed  so as to enable prewhitening of unknown 
coloured noise and  to allow for a constant false-alarm 
detection rate. The statistics are combined so as to obtain 
a best-adapted partition of the signal with the goal of 
finding the largest detection statistics in each segment. 

The detectors are tested using several underwater 
acoustic transients buried in ambient sea noise. The 
results show that the proposed adaptive window-length 
detectors outperform the detectors with fixed window 
lengths.  
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