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Abstract
Wear-type rail corrugation, a longitudinal surface profile irregularity, is predicted as a closed form analytical solution 

for wear variations about constant nominal wear. This prediction is based on a two-mode model and a wear-type rail 
corrugation growth analysis of [7]. The wear profile is comprised of a superposition of wear variation for each vibration 
mode of interest. The solution can be presented either as a first order approximation with reasonably good accuracy, or as a 
full series expression. The solution is tested and compared with numerical simulations under various parameter conditions. 
Good agreement between analytical and numerical results has been found. After the wear profile prediction is obtained, the 
growth rate is derived in the time and frequency domains. The effect of an initial impulse, representing a rail surface 
irregularity, on the growth rate measurements is investigated and found to be significant. The closed form analytical growth 
rate results are shown to agree with numerical simulations of the two-mode model and the simplified growth rate expression 
derived previously.
Nomenclature
C    Nondimensionalised creep coefficient 

   Fourier transform operator 
ir

G     Growth rate parameter for mode i 

bh    Bump height representing rail profile  
irregularity  magnitude 

ih    Modal bump height representing rail profile 
irregularity magnitude 

0k    Wear coefficient 

ck    Contact stiffness 

bK  System parameter, representing the sensitivity 
of wear variations to wheel/rail contact 
deflection variations 

icK  System parameter, representing the modal  
                sensitivity of wheel/rail relative displacement 

to input longitudinal profile 
   Laplace transform operator 

im , i , i Modal mass, natural frequency, damping 
 n        Number of modes 
N    Wheelset pass number 

ip    Element of the modal matrix 

0P    Nominal contact force 
S    Nondimensionalised Laplace transform
                complex variable 
t    Dimensional time 
V    Train speed 
x    Distance along rail track 

iy , iY    Time, Laplace domain modal displacement of
  vertical wheelset rail dynamics 

ry    Vertical displacement of rail 

wy    Vertical displacement of the wheelset 
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inZ    Time, Laplace domain rail longitudinal profile  
irregularity from nominal steady state wear
conditions entering the rolling contact region 

outZ   Time, Laplace domain rail longitudinal profile 
irregularity from nominal steady state wear
conditions exiting the rolling contact region 

i        System parameter 
  Delta function 

          Nondimensional time 
  Nondimensional damped oscillation frequency 
  Nondimensional frequency domain variable 

   Nominal steady state change in profile per 
  wheelset pass 
  Nondimensional impulse duration or bump    

         action time 
cript
      Modal parameter 

roduction
The evolution of rail corrugation has been studied 
everal decades. In the last two decades, wear-type 
gation, characterized by both a long (100-400mm) 
short pitch (25-80mm) wavelength, has aroused 
ay industry concerns. Currently the only reliable 
dy for this problem is grinding which costs the 
stry substantially. Other techniques, such as rail 
facing, have had some reported success in reducing 
rowth of corrugations but are not reliable cures for 

onditions. Therefore much research has been focused 
rediction and prevention of rail corrugation recently. 
nt research in Germany [1], Sweden [2] and Japan 
mongst others has resulted in the development of 
rated simulation programs incorporating complex 

e element models for the dynamics of the track and 
ete element models for the rolling contact 

hanics. However, as in many practical problems, a 
and exact analytical solution is still required to 



confirm these numerical results and provide more insight. 
The advantage of an analytical solution is that it clearly 
identifies how the various parameters influence 
corrugation generation. A number of efforts have been 
directed towards obtaining analytical solutions to rail 
corrugation development including Bhaskar et al [4], 
Muller [5] and Nielsen [6]. Muller [5] and Nielsen [6] 
have investigated a non-linear contact mechanics filter on 
wear-type corrugation growth. However the investigation 
neglected the effect of wheel/rail structural dynamic 
components on growth.  Bhaskar et al  and Muller  
investigated the stability of the interaction between the 
structural dynamics and contact mechanics. However, 
both these stability analyses only considered the system 
behavior over one wheelset passage, neglecting the effect 
of wear over multiple wheelset passages. Recently, 
Meehan et al [7] has extended this research providing an 
analytical prediction of the growth of wear type rail 
corrugation over multiple wheelset passes. This 
analytical solution for growth of amplitude of 
corrugations is based upon a simplified feedback system 
encapsulating the interactions between the most critical 
modal dynamics of the vehicle and track, the linearized 
contact mechanics and the wear process. However, the 
detailed analytical solution for the complete corrugation 
wear profile evolution was not explicitly found. 

The aim of present work is to extend this analysis of 
[7] to develop this explicit analytical solution for rail 
wear profile, initiated by a surface irregularity. In 
particular, a general mathematical solution for profile 
variation after a number of wheelset passages, N, is first 
developed based upon a modal analysis of the dynamics 
[7]. To validate the solution, the results are compared 
with numerical simulations of a more complex model 
under various parameter conditions. Subsequently, the 
growth of wear-type rail corrugation is derived in the 
time and frequency domains from the analytical solution. 
In particular, the effect of an initial impulse, representing 
a rail surface irregularity, on the growth rate 
measurement is investigated. Finally a comparison of the 
present analytical results for corrugation amplitude 
growth with the previously obtained analytical 
expression in [7] as well as the numerical results is 
performed.

Analytical Solution for Rail 
Corrugation Profile Variations 

The system diagram shown in Figure 1 describes the 
wear-type rail corrugation development feedback 
mechanism. Meehan et al [7] provides a detailed 
description and derivation of this model. The wheelset 
track vibrational dynamics, I, may be described by the 
decoupled equation of motion for each mode, in the real 
analytical form, 

22 ( 1)i i i i i i c in i iy y y k z p m .            (1) 

Fig

The 
are g

The 
wear
each

Usin

equa

whe

Equa
pass
cont
prev
the 
expr
been

out

in

Z
Z

whe
ure 1. Feedback model for wear-type rail corrugation 

coordinate transform for the modal displacements, yi,
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equations governing the contact mechanics, II, and 
 process, III, can then be combined and solved for 
 mode to give, 

0 01
i i iout in c i i inz z z C k y p z P .         (3) 

g the Laplace transform denoted as,

( )if t F S ,               (4) 

tions (1) and (3) may be solved to obtain,

21 1 2 1
i i iout in b c iZ Z K K S S ,          (5) 

re,

0 0b cK C k z P , 2 2(1 )
ic c i i iK k p m .      (6) 

tion (5) may be used to determine the profile after N
es. From definition, the profile coming into the 
act patch,

iin NZ , is the same as profile after the 
ious pass, 1iout NZ , i.e. 1i iin N out NZ Z  representing 
pass delay, IV. Using this simplification, the 
ession for the profile after N passages, 

iout NZ  may 
 obtained as, 

1 2
2

1 1 2

(1 )
2 1

i i i i

i i i i

N out out out N N Ni

in in in N i

Z Z Z
Z Z Z S S

, (7)

re system parameters and i  are defined as, 

1 bK , 1
ii b c bK K K .            (8) 
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Using a Taylor’s series expansion for the Nth order
difference function, equation (7) may be expressed as, 

2
11

1 1
2 1

i

i

jN
jout N N i

jin i

Z N
jZ S S

,  (9)

where the binomial coefficient is defined as , 

!
!( )!

N N
j j N j

.

In the subsequent analysis, a complete time domain 
solution to (9) is developed for an initial bump or 
impulse condition representing a typical irregularity of 
the rail. In the Laplace domain, the magnitude of the 
initial profile, 1iinZ , is defined as the area under the 
impulse. In the time domain, the magnitude of the initial 
profile, 1iinz , is defined as height of the impulse function.

The inverse Laplace transform of (9) is the time 
domain rail longitudinal profile after N passages in 
response to an impulse, and may be obtained as,

1
( ) 1 , (10)
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and 21
id i . The nondimensional time is defined 

as i t . The modal contribution to the impulse 
response is defined by, 

ii c bh K h ,                             (11) 

where
1

n

i b
i

h h . The total wear is then obtained as,

1
( ) ( )

i

n

out N out N
i

z z .             (12) 

As an example, equations (10), (11) and (12) may be 
used to obtained the wear profile after the first pass, as, 

sin
ii

i

i

dN
out N i b i

d

z h h N e (13)

This solution also represents the first order 
approximation for wear over subsequent passes.

By inspection of (10), it is noticed that for N
passages, the first N terms should be included in the 
solution for perfect accuracy. However, large amounts of 
computer memory are required for large values of N.
Therefore, it is useful to determine how many terms are 
required to achieve sufficient accuracy. 
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ar Prediction Comparison 
The explicit analytical solution for rail profile wear 
12) was compared with that obtained via numerical 
ration. An example of the results is shown in Figure 
 particular, the wear prediction (10-12) with one (13) 
three terms is plotted versus rail track position 
ble, x, assuming constant vehicle velocity V=xt. For 

parison numerical simulations using the simplified 
erical model of (7) with parameters of Table 1 are 
plotted for the case with 6

0 10k kg Nm .

Table 1. Railway parameters for simulation  

 speed [m/s]        22 Track length  [m]     6~33 
el mass [kg]       350 Rail density [kg/m]     7700 
el radius [m]       0.46 Rail radius [m]      0.3 
el load [kN]        66 Coef. of  friction      0.4 
ng’s modulus 
l) [N/m2]  2.1 1011 Primary rail 

Damping     0.01 

son's ratio      0.3 Bump length [mm]  0.25~2.5
r modulus [Pa] 7.7 1010 Bump height [m]      10-6

per spacing  [m]       0.6 Contact damping   0.0021 

Figure 2. Wear profile time history prediction 

Figure 2 shows a very good correlation between the 
erical and analytical profile predictions at the initial 
on of the rail span. It is noted that in this section of 
lot all solution traces are overlapping one another. 
wavelength of corrugation is determined by the 

inant modal frequency of the system and the speed 
e vehicle. In this case the lower frequency system 
e at 295Hz has a higher growth rate and therefore 
inates over the higher frequency mode at 1503Hz.  It 
ted that the three-term solution consistently overlaps 
numerical results, while the one term solution is 
cient if the local wear, in the vicinity to a bump, is of 
est. These results indicate that at least three terms 
ld be included in the solution for a fairly accurate 
lt over the full length of track. In general, similar 
ement between the analytical and numerical time 
ry results has been obtained for a range of 0k . It is 
d that this agreement deteriorated as the length of the 
l bump increased; ie as the initial conditions became 

like an impulse.

Bump 

              20 passes 

40 passes 

60 passes 

710



Growth Rate Prediction 
It is of interest to determine and compare the growth 

rate of the amplitude of wear variations from the full 
analytical solution (10-12) with those obtained 
numerically and by use of the simplified expression 
developed in [7]. The growth rate may be obtained in the 
time or frequency domain. In the time domain, peak and 
trough values of wear profile variation, may be used to 
measure growth in amplitude of wear over successive 
passages. Alternatively, in the frequency domain, a 
discrete Fourier transform algorithm (FFT) may be used 
for the same purpose. 

The results obtained by these two means are 
analyzed and compared with numerical simulations. The 
reason for an unexpected difference between results is 
revealed via a frequency domain analysis of the entire 
wear profile.

Time Domain Growth Rate Measurement 
With time domain wear, the growth rate may be 

obtained by individual measurement of the peaks and 
troughs of profile after the irregularity (bump) to obtain 
the profile magnitude ratio 

i iout N in NZ Z  for each mode at 
a particular rail span position, x. This method is found to 
require a large number of passages to be accurate. The 
reason for this is numerical in nature. For instance, using 
the one-term approximation (13) the profile ratio after N
passes is, 

1
i iout N in NZ Z N N ,             (14) 

where  is 1.000092 for the parameters of Table 1 
and 6

0 10k . By inspection of (14) it can be seen that a 
substantial pass number related error arises from the 
factor 1N N .  In this case, this error factor takes the 
values 2, to 3/2, 4/3 over successive passes and decreases 
slowly toward unity as N increases.  In fact, simulation 
revealed that a pass number independent growth rate 
could be seen only after 510 passages when the term 

1N N drops below 1.00001. This poses a large 
calculation burden for computer simulation. 
Unfortunately artificially increasing the wear rate 
coefficient, 0k , to scale to a larger number of passages, 
causes the contact force to vary beyond the linear range, 
therefore inducing another source of error.

One possible method to overcome this pass number 
dependent error in growth rate is to multiply the 
measured profile ratio 

i iout N in NZ Z  by an operating 
factor ( 1)N N  for a one-term approximation. In this 
case, in accordance with (14) a growth rate of  would 
be expected to be obtained for the dominant mode. 
However, using this method there is not a distinct 
measurable growth rate for each mode. For higher order 
approximations, the factor ( 1)N N  inevitably 
introduces errors into higher order terms. These higher 
order terms later are found to have a greater contribution 
further away from bump. Hence only when choosing the 
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few peaks at the initial position of the rail span, does 
rly accurate growth rate appear to be obtained using 
method. An example of a growth rate plot using this 
od is shown in Figure 3.

Figure 3. Modal growth of the amplitude of the 
first peak-trough of profile with 6-term formula

From the graph, the growth rate of low and high 
ency mode corrugations is estimated as 0.00007 and 

009 respectively.  It is of interest to compare these 
th rate results to those obtained in [7]. In [7] the 

inant frequencies that give extreme values for 
th are 2 1 2d i  and 2 1 2d i  and the 
sponding maximum growth rate derived is , 

1 4 1bi ir c i iG K K ,          (15) 

ming a small 0k , where 
ir

G is defined as, 

i i

Gri
out inZ Z e .                                (16) 

wing the stability analysis as in [7], if the modal 
encies 21

id i  of the harmonic components 
0) are used instead of the extreme values above, the 
sponding growth rate is obtained as, 

21 3 4
i ir b c iG K K ,  for 0k << i .      (17)

modal growth rates calculated using (17) and 
meters in Table 1 are 40.7005 10  and 

409 10  for 6
0 10k . These values are almost 

tly evident in the numerical results of Figure 3, 
ever are distinctly different from those calculated 
g (15).  
Therefore it is found that by using a time domain 
od that neglects growth over the entire rail profile, 
haracteristic frequencies of the wear profile appear 

iffer from the dominant ones predicted in [7]. To 
stigate these shortcomings further a growth rate 
ysis in the frequency domain is performed and 
ytical and numerical results are compared. 

Low frequency 295Hz
High frequency 1503Hz 



Frequency Domain Growth Rate Measurement 

A Fourier analysis was performed in order to identify the 
dominant frequencies associated with the maximum 
growth rate, taking into account the entire wear profile. 
For simplicity, the first order approximation of the full 
analytical solution (13) is considered. The Fourier 
transform of (13) may be expressed as,   

1

2

( )
sini i

i

out
d

z
A e

A
 (18) 

where the following amplitude parameters are defined as 

1
N

iA h , 2 i

N
b i dA h N ,                (19) 

1 2 1
ib d bA A A K NK .                 (20) 

The second term of (18) represents the frequency content 
of the wear profile not including the initial irregularity. 
This term alone would provide a spectrum peak at 

21
id i , in accordance with the results using the 

time domain analysis in the previous section. In the 
following analysis the effect of combining this term with 
the bump related, , term is investigated. In particular, 
evaluation of the transforms in (18) gives,

cos( ) sin( )A i ,       (21) 

2sin 1 2i

i id d ie i .         (22)

where is the nondimensionalised frequency variable of 
the Fourier transform. Since the impulse duration time is 
much smaller than the natural period of damped 
oscillation 1 i , it is assumed that the cosine function in 
(21) is approximately 1 and the sine function, 0, for 
frequencies, , of order less than 2. Therefore, under 
this approximation, the magnitude artifact of equation 
(21) may be expressed as,

2
2 2 2

1 2
22 2 2

2

( ) (1 ) 2 1 (1 )

1 4
iout i i

i

z A
A

A
. (23) 

The particular frequency, , that maximizes the 
magnitude of 1[ ( )]

ioutz , representing the dominant 
growth rate, may then be determined. The maximum 
value depends on the second term on the right hand side 
of (23). Therefore by taking the derivative of this term 
with respect to  and finding the roots, the extreme 
values of (23) may be determined. The resulting 
expression is, 

22 2 2 24 1 8 4 1 16 0
i id i d iA A . (24) 

 Solving equation (24) results in, 
2 2 22

2 2
2 2

1 2 11
1 4

2 4
i i ii

iA A A
.  (25)  
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A  << i <1,equation (25) may be simplified to, 

2 1 2 i ,                (26) 

h coincides exactly with the theoretically obtained 
inant frequencies in [7]. The positive sign in (26) 
ides a maximum and negative sign results in a 
mum. By inspection of equations (19) and (20), it 
 be deduced that A generally satisfies the condition 
e, although for a very large number of passes, N, this 
 not be true.
To this end, the analysis has shown that the FFT of 
ntire wear profile including the initial impulse shows 

l extreme values at frequencies in line with [7], while 
out the impulse there is only one local peak at the 
ped natural frequencies, 

id .
The results of this analysis is confirmed with FFT 
lations of numerical simulation results. It is noted 

FFT calculations of the analytical solution (10-12) 
ided the same results as shown in Figure 4.  From 
 results, it may be inferred that the entire wear 

ile needs to be included to obtain the exact values of 
dominant frequencies of the maximum growth rate. 

importance of obtaining correct dominant 
encies on growth rate prediction is investigated 

equently.

gure 4. Frequency spectrum of in the region of the low
quency mode of the wear profile; (a) without the initial
mp; (b) including the initial bump. 
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Growth Rate Comparison
The growth rate obtained from the frequency domain 

method is compared with results via numerical 
simulation, and the analytical expression (15) (of [7]) in 
Figure 5 using the parameters of Table 1 and 

7
0 10k kg/Nm. The wear is expressed as a profile 

ratio, which is defined as 1/
i iout N inz z  for the lower 

dominant frequency mode of wear. The full analytical 
solution (10-12) was used with a range of different 
accuracies and all converged to the trace marked as ‘Full 
analytical’. Table 2 summarizes the results for growth 
rate derived using the three methods for both the low and 
high frequency modes.

Figure 5. Profile ratio comparison of low frequency 

Table 2. Growth rate comparisons 

Gr of low 
frequency

Gr of high 
frequency

Numerical  0.01097 0.000203 
Analytical (14) 0.01079 0.000188 
Full analytical  0.01065 0.000191 

The results of figure 5 and Table 2 show that for 
both lower and higher frequency modes of wear, very 
good agreement between all methods is obtained. The 
significance of obtaining the exact dominant frequencies 
of the wear may be noted. In particular, the growth rates 
obtained in Table 2 for the lower and higher frequency 
mode is in the order of 1400 times and 20 times higher, 
respectively, than that obtained using the time domain 
method.

In the above analysis it has been shown that the 
entire wear profile including the initial irregularity needs 
to be incorporated via an FFT analysis when estimating 
corrugation growth. Also, the results indicate that the 
analytical expression  (15) of [7] is a sufficiently accurate 
tool for corrugation growth estimation. 
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nclusions
A complete analytical solution of the longitudinal 
gation profile initiated by a surface irregularity, 
sented as a bump has been developed. The solution 

icts the rail wear variation over any number of 
elset passes. Wear profile predictions show good 
ement with numerical results. Subsequently, the 
th rate of wear corrugation derived from this full 

ytical solution is obtained using time and frequency 
ain methods. Good results are found using FFT 
ysis over the entire wear profile including the initial 
ularity. In particular, the effect of an initial impulse 
he growth measurement results has been analyzed 
found to be crucial. The growth rates obtained via 
erical simulation and the complete analytical 
ession support the simplified analytical expression 
rowth rate obtained in [7].
A limitation of this closed form solution is that by 
rization, it has been assumed that the growth 
litude is small. Therefore, for larger amplitude 
th it is expected that the comparisons between 

erical and analytical solutions will deteriorate, due to 
inearities.
Future investigations could focus on the influence of 
ers and nonlinearities of the creep model. Also, it is 
terest to investigate more deeply the effects of wheel 
d and initial rail irregularity size on growth.

ferences
K. Hempelmann and K. Knothe, An extended linear 
model for the prediction of short pitch corrugation, 
Wear 191 (1996) 161-169 
A. Igeland, and H. Ilias, Rail Head Corrugation 
Growth Predictions Based On Non-Linear High 
Frequency Vehicle/Track Interaction, Wear 213 
(1997) 90-97 
A. Matsumoto, Y. Sato, et al. Study on the 
Formation Mechanism of Rail Corrugation on 
Curved Track. Vehicle System Dynamics 25 (1996) 
450-465 
A. Bhaskar, K.L. Johnson, G. D. Wood, and J. 
Woodhouse, Wheel-rail dynamics with closely 
conformal contact. Part 1. Dynamics Modeling and 
Stability Analysis, Proc. Instn. Mech. Eng. 211 (F) 
(1997)11-26
S. Muller, A linear wheel-rail model to investigate 
stability and corrugation on straight track, Wear 249 
(2001) 1117-1127 
J. B. Nielsen, Evolution of rail corrugation predicted 
with a non-linear wear model, Journal of Sound and 
Vibration 227 (1999) 915-933 
P.A. Meehan,W.J.T. Daniel and T. Campey, Wear-
type rail corrugation prediction and prevention, 
Proceedings of the 6th International Conference on 
Contact Mechanics and Wear of Rail/Wheel 
Systems(CM2003) in Gothenburg, Sweden, June 10-
13, (2003) 445-454 


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by P.A. Meehan
	------------------------------

	blhs227: 
	pagenumber227: 227
	blhs228: 
	pagenumber228: 228
	blhs229: 
	pagenumber229: 229
	blhs230: 
	pagenumber230: 230
	blhs231: 
	pagenumber231: 231
	blhs232: 
	pagenumber232: 232


