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Abstract

The growth behaviour of the vibrational wear phenomenon known as rail corrugation is investigated using analytical and
numerical models. A feedback model for wear-type rail corrugation that includes a wheel pass time delay is investigated
with an aim to determine what effects the time between successive wheel passages has on the growth of the amplitude of
corrugations. The feedback model is simplified to encapsulate the most critical interactions occurring between the wheel/rail
structural dynamics, rolling contact mechanics and rail wear. A stability analysis on the system yields the growth of wear-
type rail corrugations over multiple wheelset passages as a function of the passage time delay magnitude. Based on these
results, numerical and analytical investigations are performed to identify conditions under which the passage time delay has

a significant effect on the growth of corrugations.

Nomenclature

C, Sensitivity of creep to contact force variations
G, Modal growth rate parameter

k, Wear coefficient

o

Contact stiffness

Sensitivity of the steady state response of
wheel/rail relative displacement to a step
change in input longitudinal profile

K Modal sensitivity of the steady state response
of wheel/rail relative displacement to a step
change in input longitudinal profile

=N ST

o>

L Laplace transform operator

m, ,®, , ¢, Modal mass, natural frequency, damping

n Number of modes

N Wheelset pass number

D; Element of the modal matrix

F, Nominal contact force

S Nondimensionalised Laplace transform
complex variable

t, T Dimensional, nondimensional time

At Wheel pass time delay

4 Vehicle speed

X Distance along rail track

A4 Time, Laplace domain modal displacement of
vertical wheelset rail dynamics

y, Vertical displacement of rail

Y, Vertical displacement of the wheelset

z,,Z, Time, Laplace domain rail longitudinal profile

/z,,,Z,, Variation, from steady state wear,
entering/exiting the rolling contact region

a,pB System parameter

w, Nondimensional damped oscillation frequency

Az, Nominal steady state change in profile per
wheelset pass

Subscript

i Modal parameter (mode 7)

11

Introduction

Rail corrugation is a rolling contact vibration
phenomenon characterised by the development of highly
undesirable, irregular, wear patterns on railway track.
These corrugations induce vibrations as vehicles pass
over them, causing excessive noise, restricting running
speeds and in some cases causing serious track defects.
The phenomenon has remained persistent and grown in
prevalency, worldwide, in its multiple forms over many
decades [1]. Wear-type rail corrugations include those
classified as “rutting” and “roaring rails”[1],
characterised by both long (100-400mm) and short pitch
wavelengths (25-80mm). The resultant railway noise due
to short pitch wavelengths is in the range of 200-1500Hz
and is particularly undesirable in populated areas. At
present the only reliable cure for wear-type rail
corrugation is removal by grinding, which costs the
railway  industry  substantially in  maintenance
expenditure per annum [2]. These costs appear to be
increasing in line with the significant increase in usage,
development and speed of railways throughout the world.

Much research has been focused on prediction and
prevention of rail corrugation recently. Recent research
in Germany|[3], Sweden[4] and Japan[5] amongst others
has resulted in the development of integrated simulation
programs incorporating complex finite element models
for the dynamics of the track and discrete element
models for the rolling contact mechanics. Recently Wu
and Thompson [6] have numerically investigated the
effect of multiple wheel/track passes using a frequency
domain model. To provide fundamental insight, a
number of efforts have also been directed towards
obtaining analytical predictions of wear-type rail
corrugation [2,7,8]. Muller [2] and Nielsen [8] have
investigated a non-linear contact mechanics filter to
explain reports of the independence of wavelength with
speed for shorter pitch corrugations. However the
investigations neglected the effect of wheel/rail structural
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dynamic components on growth. Bhaskar et al [7] and
Muller [2] investigated the stability of the interaction
between the structural dynamics and contact mechanics
over one wheelset passage. Recently, Meehan et al [9]
extended this research, providing an analytical prediction
of the growth of wear type rail corrugation over multiple
wheelset passes. However the effect of dynamic
interactions between multiple wheel passages was not
fully investigated for short passage delays.

In the present analysis, the growth behaviour of wear-
type rail corrugation is investigated to determine
specifically what effects the time delay between
successive wheel passages has on the growth of the
amplitude of corrugations. The feedback model
developed in [9] is utilised which encapsulates the most
critical interactions occurring between the wheel/rail
structural dynamics, rolling contact mechanics and rail
wear. Using this model, numerical and analytical
investigations are performed to identify conditions under
which the passage time delay has a significant effect on
the growth of corrugations. In particular, a stability
analysis on the complete system is extended to determine
the growth of wear-type rail corrugations over multiple
wheelset passages. This is investigated further using
numerical models. The analysis is also pertinent to the
dynamic wear behaviour of two-disc test rigs.

Analysis of Rail Corrugation over
multiple wheel passages

The system diagram shown in Figure 1 describes the
wear-type rail corrugation development feedback
mechanism. Meehan et al [9] provides a detailed
description and derivation of this model.

Variation of input

Variation of
surface profile z,,
Vibrational contact forces AP
Dynamics
IV @ Wheelset / ]
¥ Contact
2o 8w Mechanics
Pass
Delay Excitation
— | =
Track
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Wear Process
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surface profile z,,, frictional power AP,
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Figure 1. Feedback model for wear-type rail corrugation

The wheelset track vibrational dynamics, I, may be
described by a decoupled equation of motion for each
mode, in the real analytical form,

Vi +200,, +w12yi =k.z,(p, _1)/mi . (D
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The coordinate transform for the modal displacements, y;,
are given by,

Vu= DDV V=D )
i=1 i=1

The equations governing the contact mechanics, II, and
wear process, III, can be combined and solved for each
mode to give,

(Zouz, ~Zi, )/Azo = C;k, (yi (l_pi)+zin‘ )/Po : 3)

For multiple wheel passages, rail profile variation
entering the rolling contact region of the wheelset,
Zin (x) , 1s the same rail profile variation exiting from the
previous wheelset pass, z,,, (x). Therefore, assuming a
time interval between wheelset passes, Af, the profile
wear of successive passes of wheelsets is represented by
the time delay relationship,

Zin (£) = 2y (= A1) 4)
Using the Laplace transform denoted as,
L{f (o) =F(), 5)
equations (1) and (3) may be solved to obtain,
z,, ]z, =1+K, [I—KC, /(s? +2§,.S+1)J, (6)
where,

K, =C.k Az, [P, K, =k.(-p) [ma’. (7)

Equation (6) represents the dynamic behaviour of the
system over one wheelset passage. K, represents the
sensitivity of wear variations to wheel/rail contact
deflection variations. Similarly, K. may be shown to
represent the modal sensitivity of tHe wheel/rail relative
displacement to a change in input longitudinal profile.
For realistic railway parameters, K;, K, and (;are
always positive valued. Under these assumptions, it may
be easily shown, using renowned stability analysis
techniques, that the second order system, (6), is always
stable, in line with [2] and [7].

To investigate the behaviour over multiple wheelset
passages, the passage time delay equation (4) is also
transformed into the Laplace form,

—Sw.A
Zinl. /Zoutl. = 2Of (8)

Equations (6) and (8) describe a single input — single
output feedback system that may also be represented by a
block diagram equivalent to figure I [9]. The stability
behaviour of the system may be determined analytically
from the characteristic equation for the complete system.
The characteristic equation may be obtained by solving
equations (6) and (8) as,

1—(1+1<b)(1—L

—Sw,At _
Sz+2gs+1je =0, ©)

where
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ﬁi — Kchi ]
1+Kb

The stability behaviour of the system is determined by
the dominant real part of the system closed loop poles
which are the roots to the characteristic equation (9),
described by the nondimensional expression,

S=oc+w,j, (11)
where ;j denotes the imaginary component. The
characteristic equation (9) may be considered to define
both magnitude and phase conditions due to the complex
nature of the roots, S. The non-trivial solutions to these
conditions are developed under the realistic assumptions

(91,

(10)

0< Ky <<d; <<1,

0< f; << ¢; <<1,

o] << ¢ <<1,
and are summarised in the following.

Phase condition
The phase condition of (9) provides the solution for the
imaginary component of the closed loop poles as,

2z
:+_
@d _a)Atn’

(12)
Equation (12) defines an infinite number of closed loop
poles at equally spaced intervals along the imaginary axis
of the root locus. Each solution to (12) represents a
frequency (or corrugation wavelength) that will be
present in the response of the system. The infinite
number of roots (or order) of the system arises due to the
nonlinear passage time delay term. The effect of the
magnitude of the wheel pass time delay As on the system
behaviour via equation (12) is investigated and discussed
subsequently.

n=0,1,2 ...

Magnitude condition
Solution for the magnitude condition of (9) yields an
expression for the real part of the system poles,

ﬂl(wdz_l)

1

o=

w;At

Equations (11)-(13) define the analytical solution for all
the closed loop system poles. The stability of the system
and hence the growth of corrugations may be determined
from equation (13). In particular, the growth rate of
instability for mode 7, defined by parameter G, can be
expressed as the magnitude of the transfer function (see

(9D,

ow,At

Zouti /Zinl. (14)

The dominant pole (or mode) magnitude is determined
by finding the critical value for the imaginary
component, @;, for which the maximum value for o
occurs. This is given by,

=1+G, =e

w42 =1+2¢;. (15)
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This maximum value for growth is typically not realised
exactly as the system phase condition described by (12)
must be satisfied. If the parameter @, A¢ is typically very
large, the discretisation of w,, defined by (12), is small
enough such that there will always be a pole that
approximately satisfies (15) to sufficient accuracy. In this
case, each wheelset passage occurs after the dynamic
effects of the previous wheelset have settled down to a
negligible level. This assumption has been made in
previous research ie [3,4,7,8] and may be used to
simplify the growth rate to the form,

G, ~K,(1+K, /4, (1+¢,))., (16)
assuming a small k. For the consideration of adjacent
wheels on a bogie travelling at considerably high speeds,
it is expected that the approximation, (16), will not be as
accurate as for low speeds. Greater accuracy will be
obtained if the value for @, that satisfies (12) and is
closest to satisfying (15) is used. In this case, the
magnitude of the passage time delay may or may not
have a substantial effect on the growth rate of
corrugations due to the phase between the previous and
present pass dynamics. This is investigated quantitatively
in the following sections using simplified and finite
element, time domain models.

Two Mode Model Wear Predictions

The analytical solutions for rail profile wear (12)-(16)
were compared with that obtained via numerical
integration based on a discrete system model described in
[9]. The vibrational dynamics is represented by two
vertical vibration modes and incorporated with Hertzian
rolling contact mechanics and frictional wear models for
rail longitudinal wear. Analytical and numerical
simulations of wear resulting from an initial bump on a
flat profile over multiple wheel passages were obtained
for infinite and short passage time delays. For
comparison, both the analytical and numerical results use
the parameters of Table 1 with k, =10~ [kg/Nm]. These
parameters are the scaled railway conditions of [9] for a
two-disk test-rig (contact stress is equivalent). A
numerical step size of 10“m was chosen to achieve
adequate convergence of solutions.

Table 1. Railway parameters for simulation

Train speed [m/s] 34.7 |Track length/pass [m] 30
'Wheel mass [kg] 49.73  |Rail density [kg/m] 7800
'Wheel radii -long. [m] 0.085 |[Rail radii -long. [m] 0.213
- trans. [m] 0.04 -trans.[m] 0.05
'Wheel load [N] 400  |Coef. of friction 0.4
Young’s modulus [N/m’] [ 2.1 x 10" [Primary rail damping | 0.01
Poisson's ratio 0.3 Bump length [mm] 0.012
Shear modulus [Pa] 7.7x 10" |Bump height [m] 107
Rail disc mass [kg] 32.06 |Contact damping 0.0021
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An example of the results is shown in Fig. 2. In
particular, the rail wear, Z N » OVET 50,000 passages for
short (0.865s) and infinite pass delays are plotted versus
rail track position variable, x, assuming constant vehicle
velocity V=xt. X0
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Figure 2. Corrugation growth over 50,000 passes.

The growth in amplitude of the dominant frequency wear
is plotted in Fig. 3 using an FFT analysis and the
analytical results of (12)-(16). The wear is expressed as a
profile ratio, which is defined as z,, , / Zi1 for the
lower frequency mode of wear. Table 2 summarizes the
results for growth rate for both the dominant modes.
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Figure 3. Corrugation amplitude growth of 223 Hz mode.

Table 2. Growth rate comparisons

G, of low G, of high

frequency | frequency

(223 Hz) (954 Hz)
At =0.865s Numerical 0.0171 0.0005
At =0.865s Analytical 0.0144 0.0005
At=c0s  Numerical 0.0156 0.0005
At=00s  Analytical 0.0183 0.0005

Figures 2 and 3 predict that the passage time delay has an
effect on the growth of corrugations for the conditions
chosen but results are fairly close to the analytical
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prediction for infinite time delay, (16). It was of interest
to investigate the effect of small changes in time delay
(or speed) on these results. As such, the growth rate of
corrugations was determined for the same conditions of
Table 1 for a range of vehicle speeds, as shown in Fig.4,
for the low frequency mode.
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Figure 4. Corrugation growth rate versus time delay.
50,000 passes. Track length/pass = 30m.

Figure 4 shows that the growth rate can be very sensitive
to vehicle speed (or passage time delay). In particular, as
the time delay gets smaller the growth rate becomes more
sensitive to its value. This is evident in the numerical
results as well. By inspection of eqs (12) and (13) it may
be seen that this sensitivity is an artefact of the phase
relationship discussed previously. In particular, the
blowup section of Fig. 4 indicates that the growth rate
variation is periodic with a period equal to @,Ar =2m. This
is consistent with the discretisation of the closed loop
poles defined by equation (18). The maximum growth
rate at any speed occurs when,

oA =n—2E—_ n=0,12..

J+28

i

(17)

which is in accordance with eqs (12) and (15). The
comparison between analytical and numerical results is
good with the small offset likely due to numerical errors
associated with the FFT method and/or nonlinearities.
Corrugation growth was also investigated under
conditions of larger variations from nominal conditions.
Figure 5 illustrates such a case for a shorter track length
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Figure 5. Modal growth of wear profile for 1,500,000
passes. Track length/pass = 1.34m.
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per pass over 1.5 million passes. Under these conditions,
the short time delay growth greatly exceeds the infinite
case, particularly once the wavelength ratio becomes an
integer. In particular, the wavelength of corrugations for
the short time delay case becomes fixed at an integer
value of 9 in accordance with the predictions of (12). In
contrast, infinite time delay case shows a wavelength that
is varying with the number of passages most likely due to
the nonlinearities associated with the large contact force
variations. At the final pass, the variation in contact force
is +80% of the nominal condition indicating highly
nonlinear conditions have been reached. Although this
case may not be of common practical concern, it would
be of interest to determine the exact nature of the
nonlinear behaviour involved. It is noted that for linear
conditions (small number of passes) the corrugation
growth was found to be similar in both cases.

For a more detailed numerical investigation,
accounting for all the modes of vibration, a finite element
model was developed as described subsequently.

Finite Element Wear Predictions

Rail wear due to two 350kg wheels, 2.4m apart,
repeatedly traversing a track has been studied with a
conventional finite element rail model. The model is
benchmarked and documented in [9] and the same
parameters are used presently, except for the sleeper
spacing, which is set at 0.685m to correspond to
Queensland practice. This spacing corresponds to 3.5
sleepers over the wheelbase. The rail consists of 5
Timoshenko beam elements per sleeper. The sleepers are
lumped masses, as are the wheels. Ties and ballast are
modelled with discrete springs and dampers. The
equations for vertical motion are derived from
equilibrium under gravity, in order to remove any
excitation due to multiples of sleeper-passing frequency.
A contact smoothing algorithm is used to avoid any
artifacts in the spectrum from the wheels crossing from
one rail element to the next. The profile of the track is
computed from estimated frictional power, filtering the
highest frequencies from the rail profile, to allow for the
finite size of the wheel-rail contact zone. The wheel is
first moved along the rail in a series of direct time
integration runs with the train speed set to 35 m s giving
a short pass delay, Az, of 0.0686 s. The peak growth of
corrugation in response to an initial random profile is
found to be at 791.4 Hz. The spectrum of corrugation
obtained is shown in Figure 6. Response around each
natural frequency is discretised at intervals of wheel-
passing frequency (//4¢f) in accordance with (12), a fact
not revealed in previous studies. The damped natural
frequencies and modes of vibration of the track model
with two wheels on it have been found from a complex
eigenvalue analysis in the Abaqus package. This reveals
that the mode responding near 791.4 Hz corresponds to 3
semi-wavelengths of bending of the rail between the
wheels.
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Figure 6: Spectrum of rail wear at wheel spacing 2.4m,
speed 35 m/s

This agrees with the observation of Igeland [10] that
peak corrugation responses occur in modes with integer
multiples of a semi-wavelength between the wheels. The
peaks near 1200 Hz correspond to about 4 semi-
wavelengths between the wheels. In order to tune the
excitation of the 791.4 Hz mode, the speed of the train is
adjusted slightly to 35.1725 m s™', making this resonance
54 times wheel-passing frequency. This tuning of the
excitation increases the growth of corrugation at this
resonant frequency by 33%.

If the wheel spacing is changed to 2.74m, making it
match 4 sleeper spacings, then a peak response at speeds
close to 31 m s occurs largely in wheel/rail modes
around 1080 Hz. However, very slight changes in train
speed greatly influence the response in these modes. The
spectrum of corrugation resembles that shown in Figure 7
and is again discretized at intervals of wheel-passing
frequency — 11 Hz.

x10°
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T T T T T
. L .
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Ay T PP PAPY PV AP P, T T T T RN o ATTPE M A T P
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Figure 7: Spectrum of rail wear at wheel spacing 2.74m,
train speed of 31.09 m/s.

Which of the 4 peaks seen in the spectrum near 1080 Hz
grows the most (1064 Hz, 1075 Hz, 1086 Hz or 1097
Hz) changes with small speed changes.

Figure 8 shows the changes in the peak growth of
corrugation after 15 million simulated passes and the
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vibration frequency associated with the corrugation in
each case.
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Figure 8. Effect of speed on corrugation growth near 31.1m/s

Each data point is from a different two-wheel simulation.
The simulations change the speed of the train by only
+0.02 m s about 31.1 m s, Hence while the overall
envelope of corrugation growth versus frequency, is
predictable, the detail of growth at a particular frequency
is critically speed dependent. These results are consistent
with analytical and numerical predictions shown in the
previous section (eg fig. 4), although the presence and
interaction of multiple modes has added complexity.

Conclusions

Analytical predictions have been developed for the
growth of wear-type rail corrugation showing the effect
of the time delay between successive multiple wheel
passages. These predictions are based on a simplified
feedback model that encapsulates the most critical
interactions occurring between the wheel/rail structural
dynamics, rolling contact mechanics and rail wear.
Numerical and analytical investigations have identified
conditions under which the passage time delay has a
significant effect on the growth of corrugations. The
results indicate that the phase relationship between the
wheel/track vibrations and wheel passages is a critical
factor determining the magnitude of the effects on
growth when the passage time delay is small. In
particular the growth is shown to very sensitive to the
time delay when it is small, however this variation is well
predicted by the analytical solution.

The model of two wheels on finite element rails
shows the sensitivity of growth to a short time-delay, as a
discretization of the spectrum of corrugation. The
growth at higher frequencies is found to be very sensitive
to this parameter, the peak response switching by one or
more multiples of wheel-passing frequency with a very
small change of train speed.

The analytical model provides a useful means by
which to predict this sensitivity. A limitation of the
analytical solution is that it is restricted to the initiation
of corrugation growth when the amplitude is small such
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that the linear assumptions are valid. For larger
amplitude growth numerical simulation indicates that
corrugation growth exceeds the analytical predictions due
to nonlinearities. This could be investigated more
thoroughly. Future research on the influence of sleepers
and initial rail irregularity on growth would also be
prudent as well as validation via experimental results.
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