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Abstract 
The radiation efficiency of an infinite flat panel which is radiating an infinite plane wave into an infinite half space can 

be shown to be equal to the inverse of the cosine of the angle between the direction of propagation of the plane wave and 
the normal to the panel. The fact that this radiation efficiency tends to infinity as the angle tends to 90° causes problems 
with simple theories of sound insulation. Sato has calculated numerical values of radiation efficiency for a finite size 
rectangular panel. This paper presents a simple analytic strip theory which agrees reasonably well with Sato’s numerical 
calculations for a rectangular panel. This leads to the conclusion that it is mainly the length of the panel in the direction of
radiation, rather than its width that is important in determining its radiation efficiency. 
Nomenclature 
a Half length of source 
c Speed of sound in air 
g Cosine of angle of incidence 
gl Cosine of limiting angle of incidence 
I Radiated sound intensity on one side 
I0 Reference radiated intensity on one side 
k Wave number in air 
kb Wave number in panel 
m Constant 
N Number of sound sources 
p Sound pressure in air 
prms Root mean square sound pressure in air
q Inverse of low frequency radiation efficiency 
r Radius of sphere or hemisphere 
S Surface area 
t Time 
U Perimeter 
u Particle velocity in air 
v Normal velocity of panel 
vrms Root mean square normal velocity of panel 
x Variable of integration 
y Complement of angle of incidence 
Zc Characteristic impedance of air 
Zwf Fluid wave impedance of panel in air 
zwf Normalised fluid wave impedance of panel 
 Half total phase change at observer 
 Angle of radiation relative to normal 
 Wavelength in air 
b Wavelength in panel 
0 Ambient density of air 
 Radiation efficiency 
 Angle of incidence relative to normal 
l Limiting angle of incidence relative to normal 
 Half change of phase across source 

ω Angular frequency 
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f an infinite plane wave strikes a panel it forces a 
ing wave in the panel whose wavelength is greater 
or equal to the wavelength of the incident wave in 

Because of this, the forced wave in the panel can 
te efficiently into air on its other side. In this paper 
irst derive the well known result that the radiation 
iency of an infinite panel is equal to the inverse of 
osine of the angle of incidence and transmission. 

 result obviously cannot be correct for a finite size 
l because it goes to infinity at grazing incidence. 
ösele [1] derived the radiation efficiency for a finite 

l. He also included panel wavelengths which are less 
the wavelength of the sound in air for which the 

ite panel model predicts zero radiation efficiency. 
gave approximate formulae for certain ranges of 

eters and graphed results of numerical calculations 
ree different sizes of panels. 
ato [2] gave the results of much more extensive 
erical calculations in both tabular and graphical form 
he forced wave case where the panel wavelength is 
er than the wavelength in air. Sato also numerically 
lated the radiation efficiency averaged over all 

ible directions of sound incidence. 
indel [3] used Sato’s numerical results for radiation 

iency in his theory of sound insulation as a function 
gle of incidence. According to Novak [4], Lindblad 
rovided an approximate formula for the radiation 

iency at high frequencies based on Gösele’s results. 
], Lindbald also gave a simpler approximation which 
 be integrated over all angles of incidence. He also 
ded the integrated formula to low frequencies. 
indel [7] presented a slightly more complicated 
on of Lindblad’s more complicated formula, with 
tants which were selected to provide good agreement 
 Sato’s tabulated radiation efficiencies. Rindel’s 
ula also extended Lindbald’s formula to low 
encies. This formula of Rindel is too complicated to 
tegrated easily by analytic means. 



Ljunggren [8] repeated Sato’s numerical calculations 
using a two dimensional model and obtained agreement 
“well within 0.5 dB” for both as a function of angle of 
incidence and averaged over all angles of incidence. 
Novak [9] has performed even more extensive three 
dimensional calculations than Sato. 

The purpose of this paper is to derive an analytic 
approximation to Sato’s numerical results using a simple 
two dimensional strip model. This analytic 
approximation has to be simple enough so that it can be 
integrated easily by analytic means over all angles of 
incidence for comparison with Sato’s diffuse field 
results. 

Infinite panels 
Figure 1 shows an infinite plane sinusoidal sound 

wave incident on an infinite panel. The panel is coloured 
red and the direction of propagation of the infinite plane 
sinusoidal sound wave is shown by the green arrow. This 
direction of propagation is at an angle of  to the normal 
to the panel. The normal to the panel is coloured mauve. 
The wave front maxima are coloured blue. They are 
separated by the wavelength  of the infinite plane 
sinusoidal sound wave. 

Figure 1. Infinite plane sinusoidal sound wave 
incident on an infinite panel 

The distance between the wave front maxima 
measured along the panel is  

sinb
λλ

θ
=  (1) 

Thus b is also the wavelength of the forced 
sinusoidal bending wave that the incident sinusoidal 
sound wave induces in the panel, because the wave front 
maxima of the forced bending wave must correspond 
with the wave front maxima of the incident wave. 

Since the wave number is 
2k π
λ

=  (2) 

  sinbk k θ=  (3) 
The frequencies of the incident sound wave, the 

forced bending wave and the transmitted sound wave 
must all be equal. Since the speed of sound is the same 
on both sides of the panel, the wavelength of the 
transmitted sound wave must be equal to the wavelength 
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the incident wave. Because the wave front maxima 
e transmitted wave must correspond to the wave 

t maxima of the forced bending wave, the transmitted 
d wave must propagate at an angle of  to the normal 
e infinite panel. 
f the particle velocity of the transmitted infinite 
e sound wave is u, the component of the particle 
city normal to the panel is u cos . Continuity 
ands that this velocity is equal to the normal velocity 
 the infinite panel. Continuity also dictates that the 
mitted sound wave pressure and the pressure exerted 
e panel to create the transmitted sound wave are the 
 pressure p.

f the density of the air is 0 and the speed of sound in 
ir is c, then the characteristic impedance of air is 

0c
pZ c
u

ρ= =  (4) 

he fluid wave impedance experienced by the panel 
s radiating side is 

0

cos cos cos
c

wf
Z cp pZ

v u
ρ

θ θ θ
= = = =  (5) 

f the fluid wave impedance Zwf is normalised by 
ing by the characteristic impedance Zc, the 
alised fluid wave impedance is 

1
cos

wf
wf

c

Z
z

Z θ
= =  (6) 

he sound power per unit area radiated by the panel 
e transmitted side is  

* 2Re( )rms rms wf rmsI p v Z v= =  (7) 
he reference radiated power per unit area is 

2
0 c rmsI Z v=  (8) 

he radiation efficiency of the panel is 

0

Re( ) 1Re( )
cos

wf
wf

c

ZI z
I Z

σ
θ

= = = =  (9) 

he fact that this radiation efficiency  tends to 
ity as the angle of incidence  tends to 90° causes 
lems with simple theories of sound insulation. This 
lt obviously cannot be correct for finite size panels. 

crete and line sources 
igure 2 shows two point sound sources which are 
rated by a distance 2a which is shown as a red line. 

two sound sources are sinusoidal with equal 
ency and equal amplitude. An observer at a distance 
h is very large compared to the distance d which 
rates the sound sources will receive almost the same 
litude sound wave from each source. The lines from 
wo sound sources to the distant observer, which are 
n in green, will be almost parallel. 
he sound wave from source 1 has to travel an extra 
nce 2 a sin , where  is the angle between the 
al, shown in mauve, to the line joining the two 
d sources and the parallel lines from the two sources 
e distant observer. It will also be assumed that the 



phase of source 2 leads the phase of source 1 by 2 .
Thus at the distant observer, the phase of the sound from 
source 2 leads the phase of the sound from source 1 by 

 2 2 2 sinkaδ ψ θ= +  (10) 

Figure 2. Two discrete sound sources 

If  is the angular frequency of the two point sound 
sources, at time t the amplitude of the sound at the distant 
observer is proportional to 

sin( 2 ) sin( ) cos sin( )
2

2sin cos sin(2 )sin( ) sin( )
2sin 2sin( )

t t t

t t

ω δ ω δ ω δ

δ δ δω δ ω δ
δ δ

+ + = +

= + = +
 (11) 

Thus the amplitude of the sound at the distant 
observer is proportional to 

sin(2 )
2sin

δ
δ

 (12) 

Now assume that there are N sources in a line of 
length 2 a. Each source has an amplitude proportional to 
1/N, is a distance 2 a / (N - 1) from the previous source 
and leads the phase of the previous source by 2  / (N – 
1). At the distant observer, the phase of the sound from 
each source leads the phase of the sound from the 
previous source by 

2 2 sin2
1

ka
N

ψ θδ +=
−

 (13) 

The sound wave at the distant observer is 
proportional to 

1

1 sin[ 2( 1) ]

sin( ) sin[ ( 1) ]
sin( )

N

n
t n

N
N t N

N

ω δ

δ ω δ
δ

=

+ −

= + −
 (14) 

The above summation has been performed using 
formula 1.341.1 on page 29 of Gradshteyn and Ryzhik 
[10]. 

If N is very large 
( 1) sinN N kaδ δ ψ θ≈ − = +  (15) 

Thus 
sin 1

( 1)
ka

N
ψ θδ +=

−
 (16) 

and 
sinδ δ=  (17) 

T
prop

T
line 
2a a
amo
sour
prop

I
wav

 
I

is pr

Inf
W

how
whe
incid
plan
the t
dime
each
over
all a

F
Ryzh

T

a

W

W
integ
the 
these
unit 

2a

Source 1 Source 2 

Parallel lines pointing to distant observer

2asin
hus the sound wave at the distant observer is 
ortional to 

sin( ) sin[ ( 1) ]
sin( )
sin( sin ) sin( sin )

sin

N t N
N

ka t ka
ka

δ ω δ
δ
ψ θ ω ψ θ

ψ θ

+ −

+= + +
+

 (18) 

his large N limit gives us the result for a continuous 
source of constant source strength over a length of 
nd phase difference which varies linearly by a total 
unt of 2  over the length 2a of the continuous line 
ce. The sound amplitude at a distant observer is 
ortional to 

sin( sin )
sin

ka
ka

ψ θ
ψ θ

+
+

 (19) 

f the phase difference  is due to a forced bending 
e induced by a wave incident at an angle of 

sinbk a kaψ ϕ= − = −  (20) 
n this case the sound amplitude at a distant observer 
oportional to 

sin[ (sin sin )]
(sin sin )

ka
ka

θ ϕ
θ ϕ

−
−

 (21) 

inite strips 
e now consider an infinite strip of width 2a and ask 

 much power per unit length it radiates from one side 
n excited by an infinite plane sinusoidal wave 
ent at an angle of  to the normal to the strip. The 

e wave maxima planes are assumed to be parallel to 
wo parallel edges of the infinite strip. This is a two 
nsional problem. We have to square the amplitude at 
 angle of radiation  to obtain the power and sum 
 all angles of radiation by integrating the power over 
ngles of radiation  from - /2 rad to /2 rad. 
rom integral 3.821.9 on page 446 of Gradshteyn and 
ik [10] 

2

20

sin ( ) | |
2

mx dx m
x

π∞
=  (22) 

hus
2

20

sin ( )
2| |( )

mx dx
mmx

π∞
=  (23) 

nd 
2

2

sin ( )
| |( )

mx dx
mmx
π∞

−∞
=  (24) 

e will make the following approximation 

sin sin 2sin cos
2 2

( )cos    for | | 1

θ ϕ θ ϕθ ϕ

θ ϕ ϕ θ ϕ

− +− =

≈ − −
 (25) 

e will also approximate by extending the limits of 
ration from - /2 to /2 to -  to . We will examine 

range of validity of this approximation later. With 
 approximations the total radiated sound power per 

length of strip is proportional to 



2

2

2

2

sin [ ( )cos ]
[ ( ) cos ]
sin ( cos )

cos( cos )

ka d
ka

ka d
kaka

θ ϕ ϕ θ
θ ϕ ϕ

θ ϕ πθ
ϕθ ϕ

∞

−∞

∞

−∞

−
−

= =
 (26) 

This is the same 1/cos  variability as in the case of 
the infinite panel since for the infinite panel, the 
transmitted angle  is equal to the incident angle .
Equation (26) is only proportional to the radiation 
efficiency of the infinite strip. Since the radiation 
efficiency of an infinite strip must equal the radiation 
efficiency of an infinite panel if ka is large enough, 
Equation (26) must be multiplied by ka/  to obtain the 
absolute value of radiation efficiency given by equation 
(9). This result has previously been obtained by Gösele 
[1]. 

We now have to investigate the range of validity of 
equation (26). The maximum value of 

2

2

sin [ ( ) cos ]
[ ( ) cos ]

ka
ka

θ ϕ ϕ
θ ϕ ϕ

−
−

 (27) 

is 1 when  equals . Thus we will replace this 
function in equation (26) with a function which is equal 
to one when 

2 coska
πθ ϕ

ϕ
− ≤  (28) 

and is zero elsewhere. This function gives the same 
value for the integral. For this replacement function the 
change to the limits of integration is only valid if the 
nonzero part of the replacement function lies between -

/2 to /2. This means that 

2 2 coska
π πϕ

ϕ
− ≥  (29) 

For | | close to /2 

cos
2
π ϕ ϕ− ≈  (30) 

Thus equation (29) becomes 

cos
2 coska

πϕ
ϕ

≥  (31) 

or 

cos
2ka
πϕ ≥  (32) 

or 

arccos
2ka
πϕ ≤  (33) 

Thus equation (26) is only valid in the range given by 
equation (33). At the two angles of incidence l given by 
the equal sign in equation (33), the total radiated sound 
power per unit length of strip is proportional to 

2 2
cos l

ka
ka ka ka

π π π
ϕ π

= =  (34) 

Since the maximum value of the function in equation 
(27) is one, the maximum value of the integral before we 
extended the limits is /2 – (- /2) = . Also cos  is in the 
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e from zero to one for all values of  in the range 
 - /2 to /2. Thus we have 

coska ka
π π π

ϕ
≤ ≤  (35) 

his means that our approximations can only be valid 
 is greater than or equal to one. 
t is also possible to approximate the integral if | | = 
Because of symmetry in the equations we only need 
nsider the case  = /2. We have 

sin( ) sin( ) cos 1
2
πθ ϕ θ− = − −  (36) 

f /2 –  is small equation (36) becomes 
2 21 11 1

2 2 2 2
π πθ θ− − − = − −  (37) 

ut

2
y π θ= −  (38) 

hen 
2[sin( ) sin( )] / 2ka kayθ ϕ− = −  (39) 

he integral becomes 
2 2

2 20

sin ( / 2)
( / 2)

kay dy
kay

∞
 (40) 

he  = /2 limit has become y = 0. The  = - /2 
 has become y =  and been extended to y = .
ntegral number 3.852.3 on page 464 of Gradshteyn 
Ryzhik [10] is 

2 2 2
3

40

sin ( ) 2  for 0
3

m x dx m m
x

π∞
= ≥  (41) 

sing equation (41), equation (40) becomes 
2 3/ 22 2 2 2

3 2 3
ka

ka ka
π π=  (42) 

ike Equation (26), Equation (42) must be multiplied 
a/  to obtain the absolute value of the radiation 
iency. This result has previously been derived by 
le [1]. It should be noted that it is 2/3 of the 

imum value derived in equation (34) for 

cos
2l ka
πϕ =  (43) 

ite size square panels 
o extend our results to values of ka less than one, we 

 assume that we are dealing with a finite size square 
l with sides of length 2a. Since we are only 
ested in the power that is radiated we only have 
ider the real part of the normalised fluid wave 
dance zwf. For a symmetrically pulsating sphere of 
s r, the real part of the normalised fluid wave 
dance for kr << 1 is k2r2. By symmetry this result 
applies to a pulsating hemisphere whose centre is on 
finite rigid plane. For sources whose size is small 

pared to the wavelength of sound, it is expected that 
 sound radiation will depend only on their volume 



velocities. Thus the result for the pulsating sphere will 
also apply to a square panel set in an infinite rigid plane 
baffle providing the area of the square panel is equal to 
the surface area of the hemisphere. Thus 2 r2 = 4a2 and 
the radiation efficiency of the square panel is 

2 2 2 2Re( ) 2Re( ) wf
wf

c

Z
z k r k a

Z
σ

π
= = = =  (44) 

Combining this result with our infinite panel and 
infinite strip results gives a radiation efficiency of 

2 2

2 2

1                    if | |
cos

2( )
1    if <| |3cos cos 2

2 2

l

l
l

k a

k a

ϕ ϕπ ϕ
σ ϕ

πϕ ϕϕ ϕπ

≤
+

=
≤−+

 (45) 

In Equation (45) the result has been interpolated 
linearly in cos  between the result at | | = l and the 
result at | | = /2. 

Table 1. Difference in decibels between the 
radiation efficiency given by Equation (45) and 

Sato’s [2] numerically calculated radiation 
efficiency. 

ka 0° 15° 30° 45° 60° 75° 90° 
0.5 -0.3 -0.3 -0.4 -0.3 -0.3 -0.2 -0.3 

0.75 -0.8 -0.7 -0.7 -0.6 -0.5 -0.5 -0.6 
1 -1.1 -1.1 -0.9 -0.7 -0.6 -0.6 -0.7 

1.5 -1.7 -1.5 -1.4 -1.0 -0.7 -0.6 -0.7 
2 -2.8 -2.6 -0.9 -0.6 -0.4 -0.2 -0.4 
3 -1.2 -1.4 -1.3 0.0 0.2 0.2 -0.1 
4 -0.5 -0.7 -1.0 -0.6 0.4 0.3 0.0 
6 -0.4 -0.4 -0.4 -0.6 0.8 0.6 0.2 
8 -0.3 -0.3 -0.1 -0.4 0.2 0.7 0.2 

12 -0.1 -0.1 -0.1 0.0 -0.3 0.8 0.3 
16 -0.1 -0.1 0.0 -0.1 -0.3 0.9 0.2 
24 0.0 -0.1 0.0 0.0 0.1 1.1 0.2 
32 0.0 -0.1 0.0 0.0 0.0 0.4 0.2 
48 0.0 -0.1 0.0 0.0 0.0 -0.2 0.2 
64 0.0 -0.1 0.0 0.0 0.0 -0.2 0.1 

The radiation efficiency averaged over all angles of 
incidence  is 

/ 2

0
( )sin d

π
σ σ ϕ ϕ ϕ=  (46) 

The sin  occurs in the integral because there is more 
solid angle for sound to be incident from the closer  is 
to /2. To evaluate this integral, the following 
substitutions are made. 

2 22
q

k a
π=  (47) 

cos
2l lg

ka
πϕ= =  (48) 

cosg ϕ=  (49) 
Hence 

sindg dϕ ϕ= −  (50) 
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 (51) 

Table 2. Difference in decibels between various 
diffuse field radiation efficiency approximations 
nd Sato’s [2] numerically calculated diffuse field 

radiation efficiency. 

ka D L1 L2 R S 
0.5 -0.27 0.46 -2.41 -1.50 -0.72 
.75 -0.53 0.81 0.06 0.34 0.31 

1 -0.70 1.09 0.10 0.29 0.19 
1.5 -0.86 1.15 0.01 0.13 0.03 

2 -0.52 0.84 0.04 0.14 0.05 
3 -0.10 0.07 0.04 0.12 0.04 
4 0.14 0.06 0.09 0.16 0.08 
6 0.27 0.05 0.06 0.12 0.05 
8 0.32 0.05 0.06 0.11 0.05 

12 0.35 0.05 0.05 0.10 0.04 
16 0.32 0.02 0.02 0.06 0.01 
24 0.30 0.01 0.01 0.05 0.00 
32 0.27 -0.01 -0.01 0.02 -0.02 
48 0.24 -0.03 -0.03 0.00 -0.04 
64 0.21 -0.05 -0.05 -0.02 -0.05 

mparison with Calculations 
able 1 shows that Equation (45) is always between -
B and +1.1 dB of Sato’s [2] numerical results. The 

est errors result from the combination of the high 
ency and low frequency results in the region of ka = 
is is why most other authors have not extended their 

oximations to low frequencies. Rindel’s 
oximation [7] differs from Sato’s tabulated results by 
een -1.4 dB and +0.9 dB, but is too complicated be 
y analytically integrated. 
indblad [6] only applied a low frequency correction 

is integrated approximation. Applying the same low 
ency correction to Lindblad’s unintegrated 

oximations gives a range of -1.3 dB to +1.8 dB 
ive to Sato’s tabulated numerical results for 
bald’s more complicated approximation which 
ot be easily analytically integrated. Lindblad’s 
ler approximation which can be analytically 
rated gives a range of -0.6 dB to +1.8 dB relative to 
’s numerical results. Novak [4] used Lindblad’s 
 complicated formula with a combining power of 

rather than the combining power of four used by 
blad. Applying Lindbald’s low frequency correction, 
ak’s approximation agreed with Sato’s numerical 
lts within range of -0.9 dB and +1.8 dB. Again 
ak’s approximation cannot be easily integrated 
ytically over all angles of incidence. 
able 2 shows that Equation (51) for the diffuse field 
ence (D), which is obtained by averaging over all 



possible angles of incidence, is always between -0.86 dB 
and +0.35 dB of Sato’s [2] numerical results. L1 in Table 
2 is Lindblad’s diffuse field result from his simplified 
approximation with Lindblad’s low frequency correction. 
L1 agrees with Sato’s numerically calculated diffuse 
field results within -0.05 dB and +1.15 dB. It is 
interesting to note in Table 2 that L2, which is L1 
without the low frequency correction, agrees with Sato’s 
numerical calculations within -0.05 dB and +0.10 db for 
ka > 0.5. At ka = 0.5, the lack of the low frequency 
correction makes the difference -2.41 dB. The equation 
for L2 is 

1 ln kaσ
π

= +  (52) 

Setting the low frequency correction q in Equation 
(51) to zero produces Equation (52) with the 1 changed 
to 1.16. 

Rindel [11] gives a diffuse field radiation efficiency 
approximation R which is very similar to L2. 

( )1 0.2 ln 2
2

kaσ = +  (53) 

Rindel says that this approximation is useful for ka > 
0.5. Table 2 shows that it agrees with Sato’s tabulated 
numerical results within -0.02 dB and +0.34 dB for ka > 
0.5. At ka = 0.5, the lack of the low frequency correction 
makes the difference -1.50 dB. Setting the low frequency 
correction q in Equation (51) to zero produces Equation 
(53) with the 0.2 changed to 0.239. 

Sewell’s work [12] can be interpreted as producing a 
similar formula with a low frequency correction. 

2 2

1 10.160 ln 2
2 16

ka
k a

σ
π

= + +  (54) 

Table 2 shows that this formula S agrees with Sato’s 
tabulated numerical results within -0.72 dB and +0.31 
dB. Sewell’s work also gives a correction for non-square 
rectangular panels. 

For a specific incidence direction 2a should be set 
equal to a typical length of the panel in that direction. For 
averages over all azimuthal angles 2a should be set equal 

to S
U
π  [8, 9], 4S

U
 [7, 11] or S [12] where S is the area 

and U is the perimeter of the panel. 

Conclusions 
The two dimensional strip model analytic 

approximation derived in this paper gives reasonable 
agreement with three dimensional numerical calculations. 
This agrees with Ljunggren [8] whose two dimensional 
numerical calculations agree within ±0.5 dB of the three 
dimensional calculations of Sato [2] and Novak [9]. It 
also agrees with the experimental measurements of 
Roberts [13] which show that the directivity of a 
rectangle depends strongly on its length in the direction 
of measurement but only weakly on its width at right 
angles to the direction of measurement. 
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hus we can conclude that the radiation efficiency of 
rced wave on a panel is mainly determined by the 
 of its length in the direction of measurement to the 
elength of the sound in air and the angle of incidence 
e forcing wave. 
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