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Abstract 
The growth behaviour of the vibrational wear phenomenon known as rail corrugation is investigated using analytical and 

numerical models. A feedback model for wear-type rail corrugation that includes a wheel pass time delay is investigated 
with an aim to determine what effects the time between successive wheel passages has on the growth of the amplitude of 
corrugations. The feedback model is simplified to encapsulate the most critical interactions occurring between the wheel/rail 
structural dynamics, rolling contact mechanics and rail wear.  A stability analysis on the system yields the growth of wear-
type rail corrugations over multiple wheelset passages as a function of the passage time delay magnitude. Based on these 
results, numerical and analytical investigations are performed to identify conditions under which the passage time delay has 
a significant effect on the growth of corrugations. 
Nomenclature 
C    Sensitivity of creep to contact force variations 

ir
G     Modal growth rate parameter 

0k    Wear coefficient 
ck    Contact stiffness 
bK  Sensitivity of the steady state response of  

wheel/rail relative displacement to a step 
change in input longitudinal profile 

icK  Modal sensitivity of the steady state response 
of wheel/rail relative displacement to a step 
change in input longitudinal profile 

   Laplace transform operator 
im , i , i Modal mass, natural frequency, damping 

 n              Number of modes 
N    Wheelset pass number 

ip    Element of the modal matrix 
0P    Nominal contact force 

S    Nondimensionalised Laplace transform  
                complex variable 
t ,    Dimensional, nondimensional time 
t  Wheel pass time delay 

V   Vehicle speed 
x    Distance along rail track 

iy , iY    Time, Laplace domain modal displacement of  
  vertical wheelset rail dynamics 

ry    Vertical displacement of rail 
wy    Vertical displacement of the wheelset 
inz , inZ    Time, Laplace domain rail longitudinal profile  

/ outz , outZ   variation, from steady state wear, 
entering/exiting the rolling contact region 

, i        System parameter 
d    Nondimensional damped oscillation frequency 

0z    Nominal steady state change in profile per 
  wheelset pass 

Subscript  
i   Modal parameter (mode i)
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 corrugation is a rolling contact vibration 
omenon characterised by the development of highly 
sirable, irregular, wear patterns on railway track.  
e corrugations induce vibrations as vehicles pass 
 them, causing excessive noise, restricting running 
ds and in some cases causing serious track defects. 
phenomenon has remained persistent and grown in 
alency, worldwide, in its multiple forms over many 
des [1]. Wear-type rail corrugations include those 
ified as “rutting” and “roaring rails”[1],
acterised by both long (100-400mm) and short pitch 
elengths (25-80mm). The resultant railway noise due 
ort pitch wavelengths is in the range of 200-1500Hz 
is particularly undesirable in populated areas. At 

ent the only reliable cure for wear-type rail 
gation is removal by grinding, which costs the 
ay industry substantially in maintenance 
nditure per annum [2]. These costs appear to be 
asing in line with the significant increase in usage, 
lopment and speed of railways throughout the world.  
uch research has been focused on prediction and 

ention of rail corrugation recently. Recent research 
ermany[3], Sweden[4] and Japan[5] amongst others 
resulted in the development of integrated simulation 
rams incorporating complex finite element models 
the dynamics of the track and discrete element 
els for the rolling contact mechanics. Recently Wu 
Thompson [6] have numerically investigated the 
t of multiple wheel/track passes using a frequency 
ain model. To provide fundamental insight, a 
ber of efforts have also been directed towards 
ining analytical predictions of wear-type rail 
gation [2,7,8]. Muller [2] and Nielsen [8] have 

stigated a non-linear contact mechanics filter to 
ain reports of the independence of wavelength with 
d for shorter pitch corrugations. However the 
stigations neglected the effect of wheel/rail structural 



dynamic components on growth.  Bhaskar et al [7] and 
Muller [2] investigated the stability of the interaction 
between the structural dynamics and contact mechanics 
over one wheelset passage. Recently, Meehan et al [9] 
extended this research, providing an analytical prediction 
of the growth of wear type rail corrugation over multiple 
wheelset passes. However the effect of dynamic 
interactions between multiple wheel passages was not 
fully investigated for short passage delays. 

In the present analysis, the growth behaviour of wear-
type rail corrugation is investigated to determine 
specifically what effects the time delay between 
successive wheel passages has on the growth of the 
amplitude of corrugations. The feedback model 
developed in [9] is utilised which encapsulates the most 
critical interactions occurring between the wheel/rail 
structural dynamics, rolling contact mechanics and rail 
wear.  Using this model, numerical and analytical 
investigations are performed to identify conditions under 
which the passage time delay has a significant effect on 
the growth of corrugations. In particular, a stability 
analysis on the complete system is extended to determine 
the growth of wear-type rail corrugations over multiple 
wheelset passages. This is investigated further using 
numerical models. The analysis is also pertinent to the 
dynamic wear behaviour of two-disc test rigs. 

Analysis of Rail Corrugation over 
multiple wheel passages 
The system diagram shown in Figure 1 describes the 
wear-type rail corrugation development feedback 
mechanism. Meehan et al [9] provides a detailed 
description and derivation of this model.  

Figure 1. Feedback model for wear-type rail corrugation 

The wheelset track vibrational dynamics, I, may be 
described by a decoupled equation of motion for each 
mode, in the real analytical form, 

22 ( 1)i i i i i i c in i iy y y k z p m .            (1) 
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equations governing the contact mechanics, II, and 
 process, III, can be combined and solved for each 
e to give, 

0 01
i i iout in c i i inz z z C k y p z P .         (3) 

multiple wheel passages, rail profile variation 
ring the rolling contact region of the wheelset, 
x , is the same rail profile variation exiting from the 
ious wheelset pass, outz x . Therefore, assuming a 
 interval between wheelset passes, t , the profile 
 of successive passes of wheelsets is represented by 
ime delay relationship, 

( ) ( )in outz t z t t   (4) 
g the Laplace transform denoted as,  

( )if t F S ,                              (5) 

tions (1) and (3) may be solved to obtain,  

21 1 2 1
i i iout in b c iZ Z K K S S ,          (6) 

re,  

0 0b cK C k z P , 2 2(1 )
ic c i i iK k p m .      (7) 

tion (6) represents the dynamic behaviour of the 
m over one wheelset passage. bK  represents the 

itivity of wear variations to wheel/rail contact 
ction variations. Similarly, ci

K  may be shown to 
sent the modal sensitivity of the wheel/rail relative 

lacement to a change in input longitudinal profile. 
realistic railway parameters, bK , ci

K  and i are 
ys positive valued. Under these assumptions, it may 
easily shown, using renowned stability analysis 
niques, that the second order system, (6), is always 
e, in line with [2] and [7]. 
investigate the behaviour over multiple wheelset 
ages, the passage time delay equation (4) is also 
formed into the Laplace form, 

i
i i

S t
in outZ Z e .     (8)

tions (6) and (8) describe a single input – single 
ut feedback system that may also be represented by a 
k diagram equivalent to figure 1 [9]. The stability 
viour of the system may be determined analytically 
 the characteristic equation for the complete system.  
characteristic equation may be obtained by solving 
tions (6) and (8) as,  

2 2 1
1 (1 ) 1 0i iS t

b S S
K e , (9) 

re  



1
b ci

i
b

K K
K

.      (10) 

The stability behaviour of the system is determined by 
the dominant real part of the system closed loop poles 
which are the roots to the characteristic equation (9), 
described by the nondimensional expression, 

dS j ,   (11) 
where j denotes the imaginary component. The 
characteristic equation (9) may be considered to define 
both magnitude and phase conditions due to the complex 
nature of the roots, S. The non-trivial solutions to these 
conditions are developed under the realistic assumptions 
[9], 

0 1b iK ,
0 1i i ,

1i ,

and are summarised in the following. 

Phase condition 
The phase condition of (9) provides the solution for the 
imaginary component of the closed loop poles as, 

2
i

d t n ,    n =0,1,2 ... (12) 

Equation (12) defines an infinite number of closed loop 
poles at equally spaced intervals along the imaginary axis 
of the root locus. Each solution to (12) represents a 
frequency (or corrugation wavelength) that will be 
present in the response of the system. The infinite 
number of roots (or order) of the system arises due to the 
nonlinear passage time delay term. The effect of the 
magnitude of the wheel pass time delay t  on the system 
behaviour via equation (12) is investigated and discussed 
subsequently. 

Magnitude condition 
Solution for the magnitude condition of (9) yields an 
expression for the real part of the system poles, 

2

2 22

1

1 2

1 ln 1 1 i d

d i d
b

i
K

t
.   (13) 

Equations (11)-(13) define the analytical solution for all 
the closed loop system poles. The stability of the system 
and hence the growth of corrugations may be determined 
from equation (13). In particular, the growth rate of 
instability for mode i, defined by parameter 

ir
G  can be 

expressed as the magnitude of the transfer function (see 
[9]),  

1 i
i i i

t
out in rZ Z G e .  (14) 

The dominant pole (or mode) magnitude is determined 
by finding the critical value for the imaginary 
component, d , for which the maximum value for 
occurs. This is given by,  

2 1 2d i .   (15) 
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 maximum value for growth is typically not realised 
tly as the system phase condition described by (12) 
t be satisfied. If the parameter i t  is typically very 
, the discretisation of d , defined by (12), is small 
gh such that there will always be a pole that 
oximately satisfies (15) to sufficient accuracy. In this 
, each wheelset passage occurs after the dynamic 
ts of the previous wheelset have settled down to a 

igible level. This assumption has been made in 
ious research ie [3,4,7,8] and may be used to 
lify the growth rate to the form, 

1 4 1bi ir c i iG K K ,                      (16) 

ming a small 0k . For the consideration of adjacent 
els on a bogie travelling at considerably high speeds, 
expected that the approximation, (16), will not be as 
rate as for low speeds. Greater accuracy will be 
ined if the value for d  that satisfies (12) and is 
st to satisfying (15) is used. In this case, the 

nitude of the passage time delay may or may not 
 a substantial effect on the growth rate of 
gations due to the phase between the previous and 

ent pass dynamics. This is investigated quantitatively 
he following sections using simplified and finite 
ent, time domain models. 

o Mode Model Wear Predictions 
analytical solutions for rail profile wear (12)-(16) 
 compared with that obtained via numerical 
ration based on a discrete system model described in 
The vibrational dynamics is represented by two 
cal vibration modes and incorporated with Hertzian 
ng contact mechanics and frictional wear models for  

longitudinal wear. Analytical and numerical 
lations of wear resulting from an initial bump on a 
profile over multiple wheel passages were obtained 
infinite and short passage time delays. For 

parison, both the analytical and numerical results use 
arameters of Table 1 with 9

0 10k kg Nm . These 
meters are the scaled railway conditions of [9] for a 
disk test-rig (contact stress is equivalent). A 
erical step size of 10-4m was chosen to achieve 
uate convergence of solutions. 

Table 1. Railway parameters for simulation  
ed [m/s]      34.7 Track length/pass [m]       30 
ass [kg]     49.73 Rail density [kg/m]     7800 
dii -long.   [m]
   - trans.   [m] 

    0.085 
    0.04 

Rail radii -long. [m]
 -trans.[m] 

    0.213 
     0.05 

ad [N]      400 Coef. of  friction       0.4 
 modulus [N/m2]  2.1 1011 Primary rail damping     0.01 
 ratio       0.3 Bump length [mm]     0.012 
dulus [Pa] 7.7 1010 Bump height [m]      10-7

 mass [kg]    32.06 Contact damping   0.0021 
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An example of the results is shown in Fig. 2. In 
particular, the rail wear, 

iout Nz , over 50,000 passages for 
short (0.865s) and infinite pass delays are plotted versus 
rail track position variable, x, assuming constant vehicle 
velocity V=xt.

Figure 2. Corrugation growth over 50,000 passes.       

The growth in amplitude of the dominant frequency wear 
is plotted in Fig. 3 using an FFT analysis and the 
analytical results of (12)-(16). The wear is expressed as a 
profile ratio, which is defined as 1/

i iout N inz z  for the 
lower frequency mode of wear. Table 2 summarizes the 
results for growth rate for both the dominant modes. 

Figure 3. Corrugation amplitude growth of 223 Hz mode.  

Table 2. Growth rate comparisons 
Gr of low 
frequency 
(223 Hz) 

Gr of high 
frequency 
(954 Hz) 

t =0.865s  Numerical  0.0171 0.0005 
t =0.865s  Analytical 0.0144 0.0005 
t =  s       Numerical  0.0156 0.0005 
t =  s       Analytical 0.0183 0.0005 

Figures 2 and 3 predict that the passage time delay has an 
effect on the growth of corrugations for the conditions 
chosen but results are fairly close to the analytical 
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iction for infinite time delay, (16). It was of interest 
vestigate the effect of small changes in time delay 
peed) on these results.  As such, the growth rate of 
gations was determined for the same conditions of 

e 1 for a range of vehicle speeds, as shown in Fig.4, 
he low frequency mode. 

gure 4. Corrugation growth rate versus time delay.               
50,000 passes. Track length/pass = 30m.  

re 4 shows that the growth rate can be very sensitive 
hicle speed (or passage time delay). In particular, as 

ime delay gets smaller the growth rate becomes more 
itive to its value. This is evident in the numerical 
lts as well. By inspection of eqs (12) and (13) it may 
een that this sensitivity is an artefact of the phase 
ionship discussed previously. In particular, the 
up section of Fig. 4 indicates that the growth rate 
tion is periodic with a period equal to i t 2 . This 
nsistent with the discretisation of the closed loop 

s defined by equation (18). The maximum growth 
at any speed occurs when, 

2
1 2 i

i t n ,    n =0,1,2 ... (17) 

h is in accordance with eqs (12) and (15). The 
parison between analytical and numerical results is 
 with the small offset likely due to numerical errors 

ciated with the FFT method and/or nonlinearities. 
Corrugation growth was also investigated under 
itions of larger variations from nominal conditions. 
re 5 illustrates such a case for a shorter track length 

 300,000 passes

600,000 passes

900,000 passes

1,200,000 passes 

1,500,000 passes 

t = 0.0386 s
t =  s 

igure 5. Modal growth of wear profile for 1,500,000 
passes. Track length/pass = 1.34m. 



per pass over 1.5 million passes. Under these conditions, 
the short time delay growth greatly exceeds the infinite 
case, particularly once the wavelength ratio becomes an 
integer. In particular, the wavelength of corrugations for 
the short time delay case becomes fixed at an integer 
value of 9 in accordance with the predictions of (12). In 
contrast, infinite time delay case shows a wavelength that 
is varying with the number of passages most likely due to 
the nonlinearities associated with the large contact force 
variations. At the final pass, the variation in contact force 
is ±80% of the nominal condition indicating highly 
nonlinear conditions have been reached. Although this 
case may not be of common practical concern, it would 
be of interest to determine the exact nature of the 
nonlinear behaviour involved. It is noted that for linear 
conditions (small number of passes) the corrugation 
growth was found to be similar in both cases.  

For a more detailed numerical investigation, 
accounting for all the modes of vibration, a finite element 
model was developed as described subsequently. 

Finite Element Wear Predictions 
Rail wear due to two 350kg wheels, 2.4m apart, 

repeatedly traversing a track has been studied with a 
conventional finite element rail model. The model is 
benchmarked and documented in [9] and the same 
parameters are used presently, except for the sleeper 
spacing, which is set at 0.685m to correspond to 
Queensland practice. This spacing corresponds to 3.5 
sleepers over the wheelbase.  The rail consists of 5 
Timoshenko beam elements per sleeper. The sleepers are 
lumped masses, as are the wheels.  Ties and ballast are 
modelled with discrete springs and dampers. The 
equations for vertical motion are derived from 
equilibrium under gravity, in order to remove any 
excitation due to multiples of sleeper-passing frequency. 
A contact smoothing algorithm is used to avoid any 
artifacts in the spectrum from the wheels crossing from 
one rail element to the next. The profile of the track is 
computed from estimated frictional power, filtering the 
highest frequencies from the rail profile, to allow for the 
finite size of the wheel-rail contact zone. The wheel is 
first moved along the rail in a series of direct time 
integration runs with the train speed set to 35 m s-1 giving 
a short pass delay, t, of 0.0686 s.  The peak growth of 
corrugation in response to an initial random profile is 
found to be at 791.4 Hz.  The spectrum of corrugation 
obtained is shown in Figure 6.  Response around each 
natural frequency is discretised at intervals of wheel-
passing frequency (1/ t) in accordance with (12), a fact 
not revealed in previous studies.  The damped natural 
frequencies and modes of vibration of the track model 
with two wheels on it have been found from a complex 
eigenvalue analysis in the Abaqus package.  This reveals 
that the mode responding near 791.4 Hz corresponds to 3 
semi-wavelengths of bending of the rail between the 
wheels.   
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speed 35 m/s 

 agrees with the observation of Igeland [10] that 
 corrugation responses occur in modes with integer 
iples of a semi-wavelength between the wheels.  The 
s near 1200 Hz correspond to about 4 semi-
elengths between the wheels.  In order to tune the 
tation of the 791.4 Hz mode, the speed of the train is 
sted slightly to 35.1725 m s-1, making this resonance 
imes wheel-passing frequency. This tuning of the 
tation increases the growth of corrugation at this 
nant frequency by 33%.   
f the wheel spacing is changed to 2.74m, making it 
h 4 sleeper spacings, then a peak response at speeds 
 to 31 m s-1 occurs largely in wheel/rail modes 

nd 1080 Hz.  However, very slight changes in train 
d greatly influence the response in these modes.  The 
trum of corrugation resembles that shown in Figure 7 
is again discretized at intervals of wheel-passing 
ency – 11 Hz.   

re 7:  Spectrum of rail wear at wheel spacing 2.74m, 
train speed of 31.09 m/s. 

ch of the 4 peaks seen in the spectrum near 1080 Hz 
s the most  (1064 Hz, 1075 Hz, 1086 Hz or 1097 

changes with small speed changes.
igure 8 shows the changes in the peak growth of 
gation after 15 million simulated passes and the 



vibration frequency associated with the corrugation in 
each case.   

Figure 8. Effect of speed on corrugation growth near 31.1m/s 

Each data point is from a different two-wheel simulation.  
The simulations change the speed of the train by only 

0.02 m s-1 about 31.1 m s-1. Hence while the overall 
envelope of corrugation growth versus frequency, is 
predictable, the detail of growth at a particular frequency 
is critically speed dependent. These results are consistent 
with analytical and numerical predictions shown in the 
previous section (eg fig. 4), although the presence and 
interaction of multiple modes has added complexity.

Conclusions 
Analytical predictions have been developed for the 

growth of wear-type rail corrugation showing the effect 
of the time delay between successive multiple wheel 
passages. These predictions are based on a simplified 
feedback model that encapsulates the most critical 
interactions occurring between the wheel/rail structural 
dynamics, rolling contact mechanics and rail wear.  
Numerical and analytical investigations have identified 
conditions under which the passage time delay has a 
significant effect on the growth of corrugations. The 
results indicate that the phase relationship between the 
wheel/track vibrations and wheel passages is a critical 
factor determining the magnitude of the effects on 
growth when the passage time delay is small. In 
particular the growth is shown to very sensitive to the 
time delay when it is small, however this variation is well 
predicted by the analytical solution. 

The model of two wheels on finite element rails 
shows the sensitivity of growth to a short time-delay, as a 
discretization of the spectrum of corrugation.  The 
growth at higher frequencies is found to be very sensitive 
to this parameter, the peak response switching by one or 
more multiples of wheel-passing frequency with a very 
small change of train speed. 

The analytical model provides a useful means by 
which to predict this sensitivity. A limitation of the 
analytical solution is that it is restricted to the initiation 
of corrugation growth when the amplitude is small such 
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the linear assumptions are valid. For larger 
litude growth numerical simulation indicates that 
gation growth exceeds the analytical predictions due 
onlinearities. This could be investigated more 
ughly. Future research on the influence of sleepers 
initial rail irregularity on growth would also be 
ent as well as validation via experimental results.  

knowledgements 
authors are grateful for the support of the Rail CRC, 
ensland Rail, Rail Infrastructure Corporation and the 
ralian Rail Track Corporation and the assistance of 
. Fraysse and Mr G. Lasserre with simulations. 

ferences 
S. L. Grassie, and J. Kalousek, Rail corrugation: 
characteristics, causes and treatments, Proceedings 
of The Institution of Mechanical Engineers, Part F 
207 (1993) 57-68. 
S. Muller, A linear wheel-rail model to investigate 
stability and corrugation on straight track, Wear 249 
(2001) 1117-1127. 
K. Hempelmann and K. Knothe, An extended linear 
model for the prediction of short pitch corrugation, 
Wear 191 (1996) 161-169.  
A. Igeland, and H. Ilias, Rail Head Corrugation 
Growth Predictions Based On Non-Linear High 
Frequency Vehicle/Track Interaction, Wear 213 
(1997) 90-97. 
A. Matsumoto, Y. Sato, et al. Study on the 
Formation Mechanism of Rail Corrugation on 
Curved Track. Vehicle System Dynamics 25 (1996) 
450-465. 
T. W. Wu and D. J. Thompson, An Investigation 
into rail corrugation due to microslip under multiple 
wheel/rail interactions, Proceedings of the 6th

International Conference on Contact Mechanics and 
Wear of Rail/Wheel Systems(CM2003) in 
Gothenburg, Sweden, June 10-13, (2003) 59-67 
A. Bhaskar, K. L. Johnson, G. D. Wood, and J. 
Woodhouse, Wheel –rail dynamics with closely 
conformal contact. Part 1. Dynamic Modelling and 
Stability Analysis, Proc. Instn. Mech. Eng.211 (F) 
(1997) 11-26. 
J. B. Nielsen, Evolution of rail corrugation predicted 
with a non-linear wear model, Journal of Sound and 
Vibration 227 (1999) 915-933. 
P.A. Meehan, W.J.T. Daniel and T. Campey, Wear-
type rail corrugation prediction and prevention, 
Proceedings of the 6th International Conference on 
Contact Mechanics and Wear of Rail/Wheel 
Systems(CM2003) in Gothenburg, Sweden, June 10-
13, (2003) 445-454 
 Igeland, “Railhead corrugation growth explained by 
ynamic interaction between track and bogie 
heelsets”,  Proc Instn Mech Engrs Part F: Journal of 
ail and Rapid Transit, 210 (1996) 11-20. 


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by P.A. Meehan
	------------------------------

	blhs11: 
	pagenumber11: 11
	blhs12: 
	pagenumber12: 12
	blhs13: 
	pagenumber13: 13
	blhs14: 
	pagenumber14: 14
	blhs15: 
	pagenumber15: 15
	blhs16: 
	pagenumber16: 16


