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Abstract

The radiation efficiency of an infinite flat panel which is radiating an infinite plane wave into an infinite half space can
be shown to be equal to the inverse of the cosine of the angle between the direction of propagation of the plane wave and
the normal to the panel. The fact that this radiation efficiency tends to infinity as the angle tends to 90° causes problems
with simple theories of sound insulation. Sato has calculated numerical values of radiation efficiency for a finite size
rectangular panel. This paper presents a simple analytic strip theory which agrees reasonably well with Sato’s numerical
calculations for a rectangular panel. This leads to the conclusion that it is mainly the length of the panel in the direction of
radiation, rather than its width that is important in determining its radiation efficiency.

Nomenclature

a Half length of source

c Speed of sound in air

g Cosine of angle of incidence

Ped} Cosine of limiting angle of incidence

1 Radiated sound intensity on one side

Iy Reference radiated intensity on one side

k Wave number in air

ks Wave number in panel

m Constant

N Number of sound sources

p Sound pressure in air

Drms Root mean square sound pressure in air

q Inverse of low frequency radiation efficiency
r Radius of sphere or hemisphere

S Surface area

t Time

U Perimeter

u Particle velocity in air

v Normal velocity of panel

Vims Root mean square normal velocity of panel
x Variable of integration

y Complement of angle of incidence

Z. Characteristic impedance of air

Zyys Fluid wave impedance of panel in air

Zyy Normalised fluid wave impedance of panel
0 Half total phase change at observer

0 Angle of radiation relative to normal

A Wavelength in air

Ap Wavelength in panel

Po Ambient density of air

o Radiation efficiency

o Angle of incidence relative to normal

o Limiting angle of incidence relative to normal
7 Half change of phase across source

w Angular frequency
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Introduction

If an infinite plane wave strikes a panel it forces a
bending wave in the panel whose wavelength is greater
than or equal to the wavelength of the incident wave in
air. Because of this, the forced wave in the panel can
radiate efficiently into air on its other side. In this paper
we first derive the well known result that the radiation
efficiency of an infinite panel is equal to the inverse of
the cosine of the angle of incidence and transmission.
This result obviously cannot be correct for a finite size
panel because it goes to infinity at grazing incidence.

Gosele [1] derived the radiation efficiency for a finite
panel. He also included panel wavelengths which are less
than the wavelength of the sound in air for which the
infinite panel model predicts zero radiation efficiency.
He gave approximate formulae for certain ranges of
parameters and graphed results of numerical calculations
for three different sizes of panels.

Sato [2] gave the results of much more extensive
numerical calculations in both tabular and graphical form
for the forced wave case where the panel wavelength is
longer than the wavelength in air. Sato also numerically
calculated the radiation efficiency averaged over all
possible directions of sound incidence.

Rindel [3] used Sato’s numerical results for radiation
efficiency in his theory of sound insulation as a function
of angle of incidence. According to Novak [4], Lindblad
[5] provided an approximate formula for the radiation
efficiency at high frequencies based on Gosele’s results.
In [6], Lindbald also gave a simpler approximation which
could be integrated over all angles of incidence. He also
extended the integrated formula to low frequencies.

Rindel [7] presented a slightly more complicated
version of Lindblad’s more complicated formula, with
constants which were selected to provide good agreement
with Sato’s tabulated radiation efficiencies. Rindel’s
formula also extended Lindbald’s formula to low
frequencies. This formula of Rindel is too complicated to
be integrated easily by analytic means.
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Ljunggren [8] repeated Sato’s numerical calculations
using a two dimensional model and obtained agreement
“well within 0.5 dB” for both as a function of angle of
incidence and averaged over all angles of incidence.
Novak [9] has performed even more extensive three
dimensional calculations than Sato.

The purpose of this paper is to derive an analytic
approximation to Sato’s numerical results using a simple
two  dimensional strip model. This analytic
approximation has to be simple enough so that it can be
integrated easily by analytic means over all angles of
incidence for comparison with Sato’s diffuse field
results.

Infinite panels

Figure 1 shows an infinite plane sinusoidal sound
wave incident on an infinite panel. The panel is coloured
red and the direction of propagation of the infinite plane
sinusoidal sound wave is shown by the green arrow. This
direction of propagation is at an angle of  to the normal
to the panel. The normal to the panel is coloured mauve.
The wave front maxima are coloured blue. They are
separated by the wavelength 4 of the infinite plane
sinusoidal sound wave.

Figure 1. Infinite plane sinusoidal sound wave
incident on an infinite panel

The distance between the wave front maxima
measured along the panel is

A = A

sin @ M
Thus 4, is also the wavelength of the forced
sinusoidal bending wave that the incident sinusoidal
sound wave induces in the panel, because the wave front
maxima of the forced bending wave must correspond
with the wave front maxima of the incident wave.
Since the wave number is

L

n @

k, = ksin@ 3)

The frequencies of the incident sound wave, the
forced bending wave and the transmitted sound wave
must all be equal. Since the speed of sound is the same
on both sides of the panel, the wavelength of the
transmitted sound wave must be equal to the wavelength
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A of the incident wave. Because the wave front maxima
of the transmitted wave must correspond to the wave
front maxima of the forced bending wave, the transmitted
sound wave must propagate at an angle of € to the normal
to the infinite panel.

If the particle velocity of the transmitted infinite
plane sound wave is u, the component of the particle
velocity normal to the panel is u cos 6. Continuity
demands that this velocity is equal to the normal velocity
v of the infinite panel. Continuity also dictates that the
transmitted sound wave pressure and the pressure exerted
by the panel to create the transmitted sound wave are the
same pressure p.

If the density of the air is py and the speed of sound in
the air is ¢, then the characteristic impedance of air is

“)

The fluid wave impedance experienced by the panel
on its radiating side is
Z
z,=L=L -t AC 5)
° v ucos@ cos@ cosl

If the fluid wave impedance Z,, is normalised by

Z( :Ezpoc
u

dividing by the characteristic impedance Z. the
normalised fluid wave impedance is
Z, 1
wf'
zZ, =——= 6
Y Z o cos@ ©

c

The sound power per unit area radiated by the panel
on the transmitted side is

[ =p rm:v:ms = Re(Z wf' )vfm.v (7)
The reference radiated power per unit area is
10 = chfms (8)
The radiation efficiency of the panel is
I Re(Z,)
=—=——""=Re(z.,)= 9
1, Z, (Z) cosé ©)

The fact that this radiation efficiency o tends to
infinity as the angle of incidence 6 tends to 90° causes
problems with simple theories of sound insulation. This
result obviously cannot be correct for finite size panels.

Discrete and line sources

Figure 2 shows two point sound sources which are
separated by a distance 2a which is shown as a red line.
The two sound sources are sinusoidal with equal
frequency and equal amplitude. An observer at a distance
which is very large compared to the distance d which
separates the sound sources will receive almost the same
amplitude sound wave from each source. The lines from
the two sound sources to the distant observer, which are
shown in green, will be almost parallel.

The sound wave from source 1 has to travel an extra
distance 2 a sin 6, where 6 is the angle between the
normal, shown in mauve, to the line joining the two
sound sources and the parallel lines from the two sources
to the distant observer. It will also be assumed that the
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phase of source 2 leads the phase of source 1 by 2 y.

Thus at the distant observer, the phase of the sound from

source 2 leads the phase of the sound from source 1 by
20 =2y +2kasin @ (10)

Parallel lines pointing to distant observer

Source 2

Source 1

Figure 2. Two discrete sound sources

If w is the angular frequency of the two point sound
sources, at time ¢ the amplitude of the sound at the distant
observer is proportional to

sin(wt +20) +sin(ar) = cos d sin(@t + 5)
2 (11)
= Msin((w +0)= SmA(ZJ) sin(at +J)
2sind 25sin(0)

Thus the amplitude of the sound at the distant
observer is proportional to
sm§25) (12)
2sind
Now assume that there are N sources in a line of
length 2 a. Each source has an amplitude proportional to
1/N, is a distance 2 a / (N - 1) from the previous source
and leads the phase of the previous source by 2 v / (N —
1). At the distant observer, the phase of the sound from
each source leads the phase of the sound from the
previous source by

20=

2y +2kasin @
N-1
the

(13)

The sound wave at distant observer is

proportional to

N
iz sin[at +2(n—1)d]
N n=l
(NS (14)
= SINNO) it + (N =1)8]
Nsin(9)
The above summation has been performed using
formula 1.341.1 on page 29 of Gradshteyn and Ryzhik
[10].
If N is very large

Né=(N-1)0 =y +kasiné (15)
Thus
:l//+kasin6’<<1 (16)
(N=1)
and
sinéd =0 17
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Thus the sound wave at the distant observer is
proportional to

sin(N9)

N sin(J)

_ sin(y + kasin 6)
 y+kasin®

sin[ax + (N —1)9]

(18)
sin(@t +y + ka sin 0)

This large N limit gives us the result for a continuous
line source of constant source strength over a length of
2a and phase difference which varies linearly by a total
amount of 2y over the length 2a of the continuous line
source. The sound amplitude at a distant observer is
proportional to

sin(y + ka.sm 9) (19)
v+ kasin @

If the phase difference y is due to a forced bending
wave induced by a wave incident at an angle of ¢

v =—k,a=—kasing (20)

In this case the sound amplitude at a distant observer

is proportional to
sin[ka(sin @ —sin ¢)]

: , 2
ka(sin @ —sin @)

Infinite strips

We now consider an infinite strip of width 2a and ask
how much power per unit length it radiates from one side
when excited by an infinite plane sinusoidal wave
incident at an angle of ¢ to the normal to the strip. The
plane wave maxima planes are assumed to be parallel to
the two parallel edges of the infinite strip. This is a two
dimensional problem. We have to square the amplitude at
each angle of radiation 6 to obtain the power and sum
over all angles of radiation by integrating the power over
all angles of radiation 6 from -n/2 rad to n/2 rad.

From integral 3.821.9 on page 446 of Gradshteyn and
Ryzhik [10]

sin’ (mx V2
E #dx =\m|—= (22)
x 2
Thus
-2
_E sin (m;c) dy= V4 23)
(mx) 2| m|
and
2
r sin (mzx) dy = b4 (24)
= (mx) |m]
We will make the following approximation
sin @ —sin @ = 2sin 0=¢ cos A
2 2 (25)

=(@—-@)cosp for |-¢p|x1
We will also approximate by extending the limits of
integration from -7/2 to m/2 to -0 to co. We will examine
the range of validity of this approximation later. With
these approximations the total radiated sound power per
unit length of strip is proportional to
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r sin’[ka(6 - @) cos @] 40

= [ka(0—@p)cos p]’

_ r sin® (ka8 cos @) 46 = V4
= (ka@cos @)’ kacos @

This is the same 1/cose variability as in the case of
the infinite panel since for the infinite panel, the
transmitted angle 6 is equal to the incident angle ¢.
Equation (26) is only proportional to the radiation
efficiency of the infinite strip. Since the radiation
efficiency of an infinite strip must equal the radiation
efficiency of an infinite panel if ka is large enough,
Equation (26) must be multiplied by ka/n to obtain the
absolute value of radiation efficiency given by equation
(9). This result has previously been obtained by Gosele
[1].

We now have to investigate the range of validity of
equation (26). The maximum value of

sin’[ka(6 — @) cos @]
[ka(6 - p)cos pT
is 1 when 0 equals ¢. Thus we will replace this

function in equation (26) with a function which is equal
to one when

(26)

@7

T

|o—9¢| < (28)

2kacos ¢

and is zero elsewhere. This function gives the same
value for the integral. For this replacement function the
change to the limits of integration is only valid if the
nonzero part of the replacement function lies between -
n/2 to m/2. This means that

V4 V4
Z ol>——2 29
2 |(p| 2kacos ¢ %)
For |p| close to 7/2
V4
——|@| = cos 30
> |o| = cos (30)
Thus equation (29) becomes
V4
cosp>—— 31
¢ 2kacos ¢ Gh
or
V4
cosp=>,— 32
® ,/2 . (32)
or
/4
<arccos,|— 33
7] ,/2 ka (33)

Thus equation (26) is only valid in the range given by
equation (33). At the two angles of incidence ¢, given by
the equal sign in equation (33), the total radiated sound
power per unit length of strip is proportional to

r___7 [%a_ 2z
kacosg, ka\ & ka

Since the maximum value of the function in equation
(27) is one, the maximum value of the integral before we
extended the limits is 7/2 — (-7/2) = z. Also cos ¢ is in the

(34)
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range from zero to one for all values of ¢ in the range
from -7/2 to #/2. Thus we have

L2 <z

—F—= 35
ka kacosg (33)
This means that our approximations can only be valid
if ka is greater than or equal to one.
It is also possible to approximate the integral if |p| =
7/2. Because of symmetry in the equations we only need

to consider the case ¢ = 7/2. We have

sin(8) — sin() = cos[%— ej 1 (36)
If z/2 — 0 is small equation (36) becomes
2 2
-7 o) =L Z_g 37)
212 22
Put
V3
=—-40 38
y=3 (3%)
then
ka[sin(@) —sin(@)] = —kay” /2 (39)
The integral becomes
2 2
J: sin (k;zy /22) d (40)
(kay” /2)

The 6 = 7/2 limit has become y = 0. The 6 = - 7/2
limit has become y = 7 and been extended to y = oo.

Integral number 3.852.3 on page 464 of Gradshteyn
and Ryzhik [10] is

.[jsinz(mzxz) J N

x = m® form=>0 41
x* 3 “1)

Using equation (41), equation (40) becomes

2\ (k)" _2 [2m

ka 3 2 3\ ka

Like Equation (26), Equation (42) must be multiplied

by ka/n to obtain the absolute value of the radiation

efficiency. This result has previously been derived by

Gosele [1]. It should be noted that it is 2/3 of the
maximum value derived in equation (34) for

T
CosQ, = %

Finite size square panels

To extend our results to values of ka less than one, we
now assume that we are dealing with a finite size square
panel with sides of length 2a. Since we are only
interested in the power that is radiated we only have
consider the real part of the normalised fluid wave
impedance z,,. For a symmetrically pulsating sphere of
radius 7, the real part of the normalised fluid wave
impedance for kr << 1 is k’7”. By symmetry this result
also applies to a pulsating hemisphere whose centre is on
an infinite rigid plane. For sources whose size is small
compared to the wavelength of sound, it is expected that
their sound radiation will depend only on their volume

(42)

(43)
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velocities. Thus the result for the pulsating sphere will
also apply to a square panel set in an infinite rigid plane
baffle providing the area of the square panel is equal to
the surface area of the hemisphere. Thus 2z” = 44’ and
the radiation efficiency of the square panel is

Re(Z Wf) 2 e
V4

o=Re(z,,)= =k’ =

(44)
Combining this result with our infinite panel and
infinite strip results gives a radiation efficiency of

1

_ iflpl< g
— S —+cos@
2k2 2
o(p)=4 " ¢ (45)
! H¢4¢K£
7 3cosg, —cosg T
2ka? 2

In Equation (45) the result has been interpolated
linearly in cos ¢ between the result at |p| = ¢; and the
result at |p| = 7/2.

Table 1. Difference in decibels between the
radiation efficiency given by Equation (45) and
Sato’s [2] numerically calculated radiation

efficiency.

ka 0° 15 30°  45°  60°  75°  90°
05 -03 -03 -04 -03 -03 -02 -03
075 -08 -07 -07 -06 -05 -05 -0.6
1 -1 -11 -09 -07 -06 -06 -0.7
15 -17 -15 -14 -10 -07 -06 -0.7
2 28 -26 -09 -06 -04 -02 -04

3 -12 -14 -13 0.0 0.2 02 -0.1
4 -05 -07 -10 -06 0.4 0.3 0.0
6 -04 -04 -04 -06 0.8 0.6 0.2
&8 -03 -03 -01 -04 0.2 0.7 0.2
12 -01 -01 -0.1 00 -03 0.8 0.3
16 -0.1 -0.1 00 -0.1 -03 0.9 0.2
24 0.0 -0.1 0.0 0.0 0.1 1.1 0.2
32 0.0 -0.1 0.0 0.0 0.0 0.4 0.2
48 0.0 -0.1 0.0 0.0 00 -02 0.2
64 0.0 -0.1 0.0 0.0 00 -0.2 0.1

The radiation efficiency averaged over all angles of
incidence ¢ is
/2 .
(o)= f o()sing do (46)

The sin ¢ occurs in the integral because there is more
solid angle for sound to be incident from the closer ¢ is

to @/2. To -evaluate this integral, the following

substitutions are made.

V4
= 47
9=55 (47)
f V4
8 (7 ha (48)
g=cosQ (49)
Hence

dg=—-sinpdg (50)
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Equation 46 becomes

1 dg <) dg
(o= [ sa[_de
sg+tg q+38,—8
| 2g+3 D)
:ln{ 9+ }rzm( g+ g’J
qt+g, 2g+2g,

Table 2. Difference in decibels between various
diffuse field radiation efficiency approximations
and Sato’s [2] numerically calculated diffuse field
radiation efficiency.

ka D L1 L2 R S
0.5 -0.27 0.46 -2.41 -1.50 -0.72
0.75 -0.53 0.81 0.06 0.34 0.31
1 -0.70 1.09 0.10 0.29 0.19
1.5 -0.86 1.15 0.01 0.13 0.03
2 -0.52 0.84 0.04 0.14 0.05

3 -0.10 0.07 0.04 0.12 0.04
4 0.14 0.06 0.09 0.16 0.08
6 0.27 0.05 0.06 0.12 0.05

8 0.32 0.05 0.06 0.11 0.05
12 0.35 0.05 0.05 0.10 0.04
16 0.32 0.02 0.02 0.06 0.01
24 0.30 0.01 0.01 0.05 0.00
32 0.27 -0.01 -0.01 0.02 -0.02
48 0.24 -0.03 -0.03 0.00 -0.04
64 0.21 -0.05 -0.05 -0.02 -0.05

Comparison with Calculations

Table 1 shows that Equation (45) is always between -
2.8 dB and +1.1 dB of Sato’s [2] numerical results. The
biggest errors result from the combination of the high
frequency and low frequency results in the region of ka =
2. This is why most other authors have not extended their
approximations to low  frequencies.  Rindel’s
approximation [7] differs from Sato’s tabulated results by
between -1.4 dB and +0.9 dB, but is too complicated be
easily analytically integrated.

Lindblad [6] only applied a low frequency correction
to his integrated approximation. Applying the same low
frequency correction to Lindblad’s unintegrated
approximations gives a range of -1.3 dB to +1.8 dB
relative to Sato’s tabulated numerical results for
Lindbald’s more complicated approximation which
cannot be easily analytically integrated. Lindblad’s
simpler approximation which can be analytically
integrated gives a range of -0.6 dB to +1.8 dB relative to
Sato’s numerical results. Novak [4] used Lindblad’s
more complicated formula with a combining power of
ten rather than the combining power of four used by
Lindblad. Applying Lindbald’s low frequency correction,
Novak’s approximation agreed with Sato’s numerical
results within range of -0.9 dB and +1.8 dB. Again
Novak’s approximation cannot be easily integrated
analytically over all angles of incidence.

Table 2 shows that Equation (51) for the diffuse field
incidence (D), which is obtained by averaging over all
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possible angles of incidence, is always between -0.86 dB
and +0.35 dB of Sato’s [2] numerical results. L1 in Table
2 is Lindblad’s diffuse field result from his simplified
approximation with Lindblad’s low frequency correction.
L1 agrees with Sato’s numerically calculated diffuse
field results within -0.05 dB and +1.15 dB. It is
interesting to note in Table 2 that L2, which is L1
without the low frequency correction, agrees with Sato’s
numerical calculations within -0.05 dB and +0.10 db for
ka > 0.5. At ka = 0.5, the lack of the low frequency
correction makes the difference -2.41 dB. The equation

for L2 is
ka
=1+1 e
(o) +n[ ”J

Setting the low frequency correction ¢ in Equation
(51) to zero produces Equation (52) with the 1 changed
to 1.16.

Rindel [11] gives a diffuse field radiation efficiency
approximation R which is very similar to L2.

(o) :%(0.2+ln2ka)

(52)

(53)

Rindel says that this approximation is useful for ka >
0.5. Table 2 shows that it agrees with Sato’s tabulated
numerical results within -0.02 dB and +0.34 dB for ka >
0.5. At ka = 0.5, the lack of the low frequency correction
makes the difference -1.50 dB. Setting the low frequency
correction g in Equation (51) to zero produces Equation
(53) with the 0.2 changed to 0.239.

Sewell’s work [12] can be interpreted as producing a
similar formula with a low frequency correction.

1 1

(o) 2(0.160+ln2ka+ 1675k2azj (54)

Table 2 shows that this formula S agrees with Sato’s
tabulated numerical results within -0.72 dB and +0.31
dB. Sewell’s work also gives a correction for non-square
rectangular panels.

For a specific incidence direction 2a should be set
equal to a typical length of the panel in that direction. For
averages over all azimuthal angles 2a should be set equal

to %S 8, 9], % [7,11] or Js [12] where S is the area

and U is the perimeter of the panel.

Conclusions

The two dimensional strip model analytic
approximation derived in this paper gives reasonable
agreement with three dimensional numerical calculations.
This agrees with Ljunggren [8] whose two dimensional
numerical calculations agree within +£0.5 dB of the three
dimensional calculations of Sato [2] and Novak [9]. It
also agrees with the experimental measurements of
Roberts [13] which show that the directivity of a
rectangle depends strongly on its length in the direction
of measurement but only weakly on its width at right
angles to the direction of measurement.
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Thus we can conclude that the radiation efficiency of
a forced wave on a panel is mainly determined by the
ratio of its length in the direction of measurement to the
wavelength of the sound in air and the angle of incidence
of the forcing wave.
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