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Abstract
Marine organisms with gas inclusions, such as fish with swim bladders and bubble-carrying plankton, can scatter sound

strongly thus contributing to volume reverberation of an active sonar and possibly introducing distortion to its pulses.
Numerical evaluation of scattering effects from these objects is often based on reduction of their shapes to simple
geometries, such as spheres or cylinders. In this work we use a viscous compressible spherical shell model with a gas
inclusion to obtain a parameterisation of the frequency dependence of the scattering cross section of individual scatterers in
terms of their effective size and material properties. We consider the range of sonar frequencies and scatterer sizes for
which the contribution of non-monopole spherical modes becomes significant. Graphical interfacing of access to model
parameters is discussed and an assessment of the characteristics of the echo returns from an ensemble of scatterers in
frequency and time domains is given.
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Introduction
Populations of marine organisms with inner gas

cavities, such as fish with swim bladders or bubble
carrying plankton, can scatter sound strongly thus
contributing to volume reverberation of an active sonar.
Scattering properties of such creatures have been
investigated in many studies (e.g. [1-10]). Qualitative
estimation of the associated scattering effects is often 
based on the reduction of the shapes of the scatterers to
simple geometries, which in many cases can be justified 
by the variety of shapes and orientations. In this paper, in
order to simulate acoustical responses of individual
objects, we employ the model developed in [7, 10]. The
scatterer in this model can be described as a compressible
viscous spherical shell with a gas inclusion. The
scattering cross section of such a shell depends on its size
and material properties, and is a nontrivial function of
frequency. We consider the range of sonar frequencies
and scatterer sizes for which the contribution of non-
monopole spherical modes becomes significant. We also
discuss graphical interfacing to the model's input
parameters and give an assessment of the characteristics
of scattering responses in frequency and time domain.
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The model 
Consider a sound pulse with plane wave front

propagating in the positive z-direction Coef
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where u0(z, t) is pressure disturbance, t is time and c is 
the speed of sound in water. This pulse can be written as 
a superposition of plane harmonic waves
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. If there is a scatterer centred at the

n, the total field at point r is
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n in the axially symmetric case for positive ω by
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re k=ω/c, r=|r|,  is the spherical Hankel
tion of the first kind, i.e.

)()1( ξmh

,1

)(
2

)(

1

)1(
2/1

)1(

ξ

ξξ
ξ

ξ
ξ

πξ

i
m

m

mm

e
d
d

Hh

+

+

−=

≡

(2)

Pm are Legendre polynomials. For negative frequen-
we have
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ficients Am(ω) depend on the scatterer. Construction
m(ω) for a viscous compressible shell with a gas 
sion was reported in [7, 10]. Here we employed the

nique described in [7] with the following modifi-
n: the compressional and the shear fields in the
us shell are expressed directly in terms of the 
rical Hankel functions  and . This approach
ed us to separate very large and very small terms,

h appear in combination in the spherical Bessel and
mann functions, j
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large. Appropriately rescaling the resulting system for the
expansion coefficients and explicitly solving with respect
to , we obtain a fast and stable procedure for
computation of the scattering field in the frequency
domain. The parameters which govern the scattering
properties of the model are as follows: water density ρ
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shell material density ρ2, gas density ρ3, speeds of sound 
in water (c), the shell (csh), and the gas (cg), viscosity
parameter ξ of the shell material, and the inner and outer
shell radii r0 and R.
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If ω is fixed and positive and , the scattering
term can be written using (2), or the general asymptotic
expansion of the Hankel functions, as 
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If our pulse is confined to a frequency band centred at ω0,
i.e.

ω∆<|0 , (4)

then, in the time domain, the scattering component takes
the form
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If there is a cloud of N scatterers, the combined response
in the single scattering approximation, in which we 
assume that the response of each scatterer is not affected
by the presence of the other scatterers, is given by
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where Rl  is the location of scatterer l (R1 = 0) and we
assume that r 1/0 >>c . In the far-field, where

, (7)ol cr ωπ /2/|2 <<R

the argument of Qm can be reduced to a simpler expres-
sion .ctz −− )e

Evaluation of (5) in the general case requires sam-
pling of f(z) with a proper rate and computation of Am(ω)
for the corresponding frequencies. Fast numerical
integration can be carried out using the Fast Fourier
Transform. An analytic treatment of (5) is possible if

ω∆  is small and Am(ω) varies slowly in (4), in which
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e at ω0. If, for example,
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re ac≡0ω . Note that parameters a and b in (8)
us to control the carrier frequency and the duration

e pulse, which at t=0 is localized near the line z = 0.
pretation of the solution will require considering it at
ceiver during a time interval associated with the
al of the main pulse and the returns from the
erers.

Figure 1. Scattering geometry

Consider now a spherical propagating pulse
hed in Figure 1. We will assume for simplicity that
pulse originates from an omnidirectional source
red at . The space-time dependence of the 
agating field can be written as 
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re R is the distance to the centre of the source. If R0 is 
 so that the far-field condition is satisfied
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re  is the projection of RlR̂ l  on the (x, y) plane, then
lly at the origin and near the scatterers the field (9)
be approximated by a one-dimensional pulse f(z–ct),
h can be used in formula (5) for evaluation of the
ering field. The far-field requirement (10) can be
ewhat relaxed to just if in (6), 
ad of , we use
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he relationship between q and f is as follows
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We will use here f and R0 as input data and relation (12)
as a reconstruction formula for q(ξ). Expressed in terms
of f, equation (9) takes the form
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Formulae (6) and (13) describe the scattered and the 
primary field in terms of the input signal f, the 
parameters R0, {Rl} and the receiver's position r.

We provide below the far-field expressions for a
receiver positioned on the z-axis.
Case (a): r = (0, 0, – | z |) corresponds to backscattering.
The scattering term takes the form
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During arrival of these returns at the receiver the primary
field makes no contribution to the signal, i.e. S (R, t) = 0. A

the tCase (b): r=(0, 0, z > 0) corresponding to the forward 
scattering yields 
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get strength 
he ability of an object to scatter wave energy in a 
in direction is described in the frequency domain by
ifferential scattering cross section defined as 
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re I0 is the intensity of the incident monochromatic
e wave and Is(θ) is the far-field intensity of the
ered wave in the direction θ. Substitution of (3) into
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coustic scattering length L (e.g. [11, page 237]) and
arget strength TS, for which we have

dL σ=||  and )m1/(log10TS 2
dσ≡

he concepts closely related to σd.
Figure 2. Spectral and angular variability of target strength.



We can see from (18) that target strength depends on
both the scattering direction θ and the frequency ω of 
incident wave. Figure 2, in which the frequency is used
as a polar radius and θ  as a polar angle, illustrates both 
spectral and angular variability of target strength. Input
parameters used in this computation are given in the
Table 1. 

ρ1 ρ2 ρ3

1000 kg/m3 1004.6 kg/m3 1.26 kg/m3

cw csh cg

1500 m/s 1500 m/s 330 m/s
ξ r0 R

25 poise 0.01 m 0.06 m

Table 1. Parameters of an individual scatterer

We took into account only the contribution of the modes
m from 0 to 10, since, in the range of frequencies under
consideration and for these values of shell parameters,
the influence of the modes with m > 10 can be safely
neglected. The comparison of the target strengths
obtained using monopole and  full mode solutions in
Figure 3 shows, that we have to depart from the
monopole mode rationale at higher frequencies.

Figure 3. Monopole and full mode solution

Note that some prominent spectral features of the
amplitude Am(ω) may not be noticeable in certain
directions. For example, A1(ω) corresponding to the
configuration shown in the table has a resonance near
10.943 kHz, but since P1(cos θ) vanishes at θ=π /2, there
will be no contribution of mode m=1 to target strength in 
the direction perpendicular to the wave vector of the
incident wave.

As we indicated earlier, the model has 9 input
parameters. Since constructing a simple analytic 
expression for the model’s target strength is not feasible,
we provided access to these parameters via a graphical
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 interface. The tool shown in Figure 4 allows one to
rve almost instantaneously how changes of their
es affect the plot of the target strength. To facilitate 
g, measurement data for a set of frequencies can be
ed and displayed. It is understandable that the shape
ost real marine organisms is far from spherical.
ever, the variety of shapes and orientations of the
erers justifies to some extent introduction of
erer's equivalent spherical radius and its use for
itative estimates.

Figure 4. GUI to input parameters

tures of time-series solution
e series solution for the scattering component can be
rated using (6). We can write (6) compactly as
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unction Q(ξ) describes the contribution from an 
idual scatterer. In a regular non-resonance case, if 

gnore a time delay, its shape is similar to that of f(ξ).
n the carrier frequency is a resonance frequency,
ct) exhibits a different behaviour typically [12]
acterised by a long trail of oscillations, which occur
 arrival of the main part of the response. The corre-
ding time series plots for these two kinds of
viour are shown in Figure 5. These plots were
ined for a configuration given in the table and a
el pulse (8) with b=2m and a=ω0/c, where ω0 is the
er frequency in radians. In the simulation, we used
000m, r=1000m and °= 0θ .



If we wish to obtain a collective transient scattering
response from spatially distributed scatterers, we have to
carry out summation of time-shifted terms (19). For our
example, the result for a receiver located at (0, 0,-1000m)
is shown in Figure 6.

Figure 6. Examples of backscattering

The simulation in this example used 104 scatterers
uniformly and randomly distributed in the cube – H/2 <
x, y, z < H/2, where H was set to 20 m.

Suppose now that we have N scatterers distributed in 
a compact volume which is centred at the origin. An 
active sonar emits a pulse and tries to detect a return echo 
from a target. In the far-field case, contributions from
scattering in the forward direction add coherently to the
propagating pulse and effectively change its shape. A
target located at some point (0, 0, z) will be insonified by
the combined field 
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where N is the number of scatterers and z is assumed to 
be positive. If the far-field conditions are not satisfied,
the forward scattering will be weaker but still much more
intense than the scattering in the backward direction. The
diagram in Figure 7 illustrates this.
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Figure 7.Comparison of scattering responses

consider its maximum )(max τχµ τ N≡  as a func-
of N. In (20), ⋅  denotes the root mean square

ation with respect to time.
hen N is not large, the value of µ(N) is very close to 

, which corresponds to little distortion. As N in-
ses, µ(N) may decrease, and the changes are mainly
eable in the resonance case. Simulations for the

e and geometry under consideration show that these
ges are approximately 3% if . This result
nds on a particular configuration and shape of the
e. In the two-way transmission case we also have to
 into account the circumstance that the scattering 
rs twice, which makes the resulting change increase.
e are limitations on the value of N that can be used 
he above calculations. If we use 1/(fish length)

5105 ⋅=N

3 as an
ate of the fish density in a school [13], and assume
the scatterer specified in Table 1 corresponds to a
length of 20 cm, then the reasonable upper estimate
ossible N in a 20 m cube would be 106.  There are
Figure 5. Transient scattering on a single shell for a resonance and non-resonance frequencies.



also restrictions on the use of the single scattering
approximation, for the same school fish density the error
of this approximation being larger at higher frequencies
where the outer viscous shell becomes less transparent
for the propagating sound field. Properly accounting  for 
the effects of multiple scattering is outside the scope of 
this paper. However, when the concentration of fish is
very high, volume shape models for entire fish schools
may be used as an approximation.

In the example below we give a summary of
simulation using a frequency-modulated pulse which has
a smaller central frequency value  (6 kHz) and a longer 
duration. Pulse duration and pulse bandwidth were set in
this simulation to 1 sec and 200 Hz. The source location
was , and the locations of the receiver were set
to . The number of scatterers N was set to
10

)km1,0,0(
)km1,0,0 ±

|||, yx

(

<

4, they were uniformly distributed in the
volume | and The inner and outer
radii of the shell were set to approximately 2 cm and 12
cm, values of the other shell parameters were the same as 
in Table 1. The resulting configuration has a resonance
frequency in the middle of the frequency band of the
considered FM-pulse.

m5.2 m.10|| <z

(a)

(b)

Figure 8. Time series for a 6 kHz FM-pulse

Figure 8 (a) shows a noticeable difference between
the shapes of the primary and total signal. However, this
distortion has very little effect on the maximal value of
the ambiguity function. Its decrease is just a little more
than 2% with a bias | |maxτc  of about 25 cm. For the
backscattering example shown in Figure 8 (b) the
maximum value of the ambiguity function is 0.73. For
higher frequencies and same pulse duration/bandwidth
this value would be smaller due to greater phase
differences of  separate returns.

Conclusions
In this work we used a compressible viscous spherical

shell model to simulate a collective transient scattering
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