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Abstract
The prediction of the pressure field at a distance from an arbitrary structure is often of interest in the acoustic design of

products, or for the prediction of the sound field scattered by an incoming plane wave. Analytical techniques are restricted
to structures that conform to separable coordinate systems and alternative approaches such as finite or boundary element
methods are often used to overcome this limitation. This paper compares results obtained from the analytical solution of a
vibrating cap mounted on the surface of a sphere with two alternative boundary element based techniques, a traditional
direct boundary element method and a new source superposition technique. The accuracy of the far field pressure solution
for both techniques is examined. It has been found that accurate solutions for beamwidth can be obtained when the mesh
density is reduced below 6 elements per wavelength.
Nomenclature
xp  pressure

k  wavenumber
circular frequency

f frequency
c speed of sound
n normal direction

density
xvn  normal velocity

r  radial coordinate
 angular coordinate

a  sphere radius
CosnP  Legendre Polynomial

rhn
2 spherical Hankel function of the second kind

0u  cap velocity

0  cap angle

sx position of the source
x position of the field point
R distance between  and sx x

xc  position dependent constant

m constant for source superposition technique

m constant for source superposition technique

Introduction

The prediction of the sound field away from an 
arbitrary structure is of interest in many fields of
acoustics. Applications in underwater sound include the
design of transducers that radiate sound with desired
directivity characteristics [1] as well as in sonar systems,
where the sound field generated by reflections
(scattering) of an incident plane wave is used to detect 
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raditional approaches to predicting radiation or
ering from structures have been limited to either
ytical solutions of the governing equations, or to high
w frequency approximations to these equations [2,
he analytical solutions are limited to structures with
ces that conform to constant coordinate values in a

ll number of separable co-ordinate systems [4], such
ylinders or spheres. As most structures are not of this
, and the frequencies of interest lie between the low 

high frequency approximations, alternative
oaches must be sought.
umerical techniques such as Finite Element

lysis (FEA) [5, 6] or the Boundary Element Method
M) [7, 8] have been used to predict sound fields from
trary structures. However, while these methods can
inate problems associated with analytical techniques, 
as been found that fully 3-D FEA can become
ctable for large models and high frequencies, and
itable for application to optimisation techniques [9].

re is also evidence that fully 3-D direct BEM is 
larly unsuitable for the mid to high frequencies [7].
his paper investigates the application of a fully 3-D
t BEM [8], as well as a relatively new source
rposition BEM [10], to the modelling of a vibrating
mounted on the surface of a sphere. Analytical

tions to this geometry are readily available [3]. First, 
heoretical backgrounds to the analytical solution and
 the direct BEM and the source superposition method
given, followed by an explanation of the figure of
it used to compare solutions (the beamwidth). The
t analytical results are compared with the results
ined using the numerical techniques, and an analysis
e speed of solution is made. The accuracy of the far 
 pressure solution for both techniques is examined
n the mesh density is reduced to below 6 elements
wavelength. Finally, conclusions are drawn as to the 



utility of numerical modelling using boundary element
methods.

Theory
The governing equation of time harmonic linear

acoustics is the scalar Helmholtz equation [8, 9, 12, 13]:

022 xpkxp  (1)

where  is the pressure, xp ck /  is the wavenumber,
f2

c
 is the circular frequency,  is the frequency

and  is the speed of sound in the medium, in this case 
air. This equation is derived from the linearised equations
of conservation of momentum and mass. To be solved,
Equation (1) requires appropriate boundary conditions.
The velocity at the interface between a solid and a fluid
can be related to the gradient of pressure as: 
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where  is the normal direction,n  is the density of the
fluid and  is the normal velocity. For external
problems, where the sound radiates away from the 
structure to infinity, another boundary condition called
the Sommerfield radiation condition is needed to make
sure only outgoing waves are present.

xvn

Analytical solutions to Equation (1) exist for
separable coordinate systems [3]. For the special case of 
a vibrating cap mounted on the surface of a sphere
(Figure 1), with azimuthally symmetric loading, the
pressure at any point outside the sphere can be calculated
by
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where r  and are the radial and angular coordinates,
is the radius of the sphere,a CosnP  is a Legendre 

Polynomial,  is a spherical Hankel function of the
second kind, a prime means differentiation with respect
to

hn
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coinfor a spherical cap on the surface of a sphere vibrating 

with velocity  and subtending angle0u 0 . A MATLAB

program has been written to calculate Equation (3).
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Figure 1. A cap subtending angle 0 mounted on
he surface of a sphere of radius , vibrating with

velocity .
a

0u

o analytical solutions exist for arbitrary geometries,
alternative numerical methods are often used. One
oach to solving Equation (1) numerically would be
iscretise it directly and solve for the pressure at every
t in the field. This is the approach that FEA takes,
there are limitations when solving problems in an
ite domain, which must be truncated in order to 
e the problem. The Sommerfield radiation condition
t be enforced, otherwise reflections from the 
dary can affect the result. The development of
opriate boundary conditions and their incorporation
 a finite element analysis is a topic of ongoing
arch [11].

nother approach is to replace the solid surface that
eing modelled with a distribution of fundamental
tions to Equation (1). A monopole is a fundamental
tion that can be derived from the linearised equations
nservation of momentum and mass with the addition

 localised volume velocity injection. This represents
sound field due to a point source, and is called the 
e space” Green’s function: 
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re  is the distance between , the position of the
ce, and

R sx
x , the position of the field point. Note that

ation (4) is singular when the source and field point
cide.

dipole is also a fundamental solution of Equation
derived from the linearised equations of conservation
omentum and mass with the addition of a localised

e. It represents the sound field of two monopoles in 
e proximity operating 180º out of phase and is the
ctional derivative of Equation (4):

n
xxg s |  (5)



Conceptually, any solid surface can be replaced by a
distribution of monopoles and dipoles. The effect of the
surface is replaced by the action of a distribution of
forces aligned normal to the boundary, and the imposed
velocity is replaced with the injection of volume velocity. 
Figure 2 shows a representation of this effect.

(a) (b)

Figure 2. A solid surface with an imposed
velocity over part of the surface, (a), can be

replaced by a suitable distribution of monopoles
and dipoles, (b).

Direct BEM

The Kirchoff-Helmholtz (K-H) integral equation [3,
8, 10, 12]:
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where  is a position dependent constant, can be
derived from either physical arguments using monopoles
and dipoles [13] or from vector calculus and Green’s
theorem [10,13]. This is the fundamental equation of
direct BEM, and shows that the pressure at any point can 
be represented by the surface integral of a combination of
monopoles and dipoles. In this equation, the dipole
source strength is weighted by the surface pressure.
Given a distribution of surface normal velocity, once the
surface pressure is found, any pressure field can be
calculated.

xc

The direct BEM finds the surface pressure by
discretising Equation (6) with n  nodes and  elements
similar to those used in FEA. If the field point is 
positioned at each surface node (or “collocated”) then a
series of  equations for the  surface pressures can 
be found for a given velocity distribution. The equations
are generated by numerical integration over each 
element, and the integration technique used must be 
capable of dealing with the singularities found at the
locations of the monopoles and dipoles. The equations
can be formed into a matrix and inverted using standard
linear algebra techniques. Once the matrix is inverted,
and the surface pressures known, the field pressures can
be calculated.
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There are a number of disadvantages to the direct
BEM approach. The K-H integral equation represents the
sound field on the exterior of a finite volume. At the
natural frequencies of the interior of the finite volume,
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exterior problem breaks down and the matrix
mes ill-conditioned. This is well documented [14]
many solutions have been attempted [15, 16].
nother problem occurs when the two surfaces of

est are brought close together, resulting in “thin-
e breakdown” [17]. This means that although some
etries are probably best represented with a thin

ace, a direct BEM simulation will have to assume the 
etry is contained in an enclosing volume to avoid

 shape breakdown, leading to an increased number of 
s and hence solution time.
he direct BEM code used in this research is HELM 
[8], a Fortran 77 implementation using linear
ents. The CHIEF method is used to overcome the 
ior natural frequency problem. This technique solves
verdetermined system of equations formed placing 

a points ( x ) inside the volume of interest. Provided
points are not placed at a nodal line of the interior
tion, this will improve the matrix condition number
allow the matrix to be solved in a least squared
e. For this application the code was modified to
pt quarter symmetric models, a change necessary to 
ce overall run time.

rce superposition 

he source superposition technique of Koopmann and 
line [10] does not solve the K-H equation directly.
ad, it uses an expansion of the pressure at a field 
t in terms of a series of monopoles and dipoles, each 
ed at the centroid of each element of the discretised
ace:
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re  is the number of elements,  is the source
gth,

en ms
m and m are constants depending on whether

source is a monopole, dipole or combination of the
(tripole). Monopoles are used to represent sources on 
surface of an infinite baffle, dipoles are used to
esent thin surfaces and tripoles to represent the
ace of the exterior of a finite volume. The use of
les eliminates the interior natural frequency problem
he direct BEM and this technique is capable of 
elling thin surfaces directly.
he normal velocity can be found using Equations (2)

(7): 
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the volume velocity over element  of the boundary
ace can be found by integrating Equation (8) over the
ent surface,
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for en,...,1 . This produces a series of  equations
with  unknown source strengths. The resulting matrix
can be inverted to find the source strengths, . Once
these strengths are found, the sound field can be
reconstructed using Equation (6).
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The source superposition code used in this research is
the Fortran 77 program Power [9]. This program has also
been modified for quarter symmetry.

Analytical solution 
The analytical solution for a 45º spherical cap 

mounted on the surface of a unit sphere has been 
calculated using Equations (3) and (4). The infinite sum
in Equation (3) was truncated at 100 terms, and the
pressure calculated in the far field. Figure (3) shows a
polar plot of the magnitude of the measured pressure,
normalised by the maximum pressure, for a 45º spherical
cap, for three different non-dimensional frequencies (ka
= 3, 10, 20).
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Figure 3. Polar plot of the magnitude of the
measured pressure, normalised by the maximum
pressure, for a 45º spherical cap mounted on the

surface of a sphere.

Figure 3 also shows the beamwidth for each of these
frequencies. The beamwidth is defined as the angle
formed by the -6 dB points, with reference to the 
maximum reading, and the source centre [18] and is a 
measure of the distribution of sound in the specified
plane. Figure 4 shows a plot of the beamwidth verses
frequency, and is the baseline for comparison with the
numerical methods.
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Figure 4. The variation of beamwidth with
frequency for a 45º spherical cap mounted on the

surface of a sphere.

sults
imulations of a 45º spherical cap mounted on the

ace of a unit sphere have been undertaken for both 
direct BEM and source superposition techniques.
re 5 shows the surface mesh used to discretise the
re, at a nominal 6 elements per wavelength. Note the
ter symmetry. A unit normal velocity was placed
 the vibrating cap, represented by the darker area in
re 5. The pressure was calculated at a radius of 18a.
is case the number of variables to be solved for the

ct BEM is 1476 compared to 1412 for the source
rposition technique.

Figure 5. Surface mesh of the 45º spherical cap
mounted on the surface of a sphere.

he beamwidth of the sphere was calculated for 135
dimensional frequencies ka ranging linearly from 1
1. The upper frequency was chosen to limit the run
 required for the direct BEM method. Figure 6 shows
mparison of the error, , between the analytical and 
erical results, defined as,
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where and  are the numerical and analytical
beamwidth respectively, for both direct BEM and the
source superposition method. The agreement between
both methods and the analytical solution is excellent,
with errors less than 1% for the direct BEM. The source
superposition technique produces a larger error of about
8% at a ka of 12. The source superposition technique was
found to produce results ~3 times faster than the direct
BEM. On an Intel P4 1500 MHz, running Windows XP, 
the run time is 379 seconds per frequency for the direct
BEM and 115 seconds per frequency for the source
superposition technique. For comparison the analytical
technique takes ~1.5 seconds per frequency.
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Figure 6. Error in the beamwidth with mesh
density 6 elements per wavelength.

The mesh density was chosen using the standard
finite element rule of thumb of 6 linear elements per
wavelength [19]. Figure 7 shows a plot of a mesh with
nominally 3 elements per wavelength. The node and
element count is reduced by at least a factor of 3, with a
corresponding reduction in run time to 36 seconds per
frequency for the direct BEM and 6 seconds per
frequency for the source superposition technique. The
source superposition technique is now 6 times faster than
the direct BEM.

The time taken to calculate the solution has been
reduced by a factor of 10 for the direct BEM and a factor
of 20 for the source superposition technique. With this
massive reduction in computation time, accurate
solutions, at least in the far field, are possible.
Figure 7. Surface mesh of the 45º spherical cap
mounted on the surface of a sphere.

igure 8 shows the errors in the beamwidth for the
h shown in Figure 7. Again the agreement between
two methods and the analytical solution is excellent,
 the error in the direct BEM less than 1% for most of
andwidth. The source superposition error is less than

for most of the frequency range, except for a ka of
where it jumps to 25%. Equation (7) is a very
itive measure of the sound field where the rate of
ge of beamwidth with frequency is large, because

ll changes in the beamwidth will lead to large
ges in the error estimate. This quantity is perhaps not
od measure of error under these conditions. Figure
shows a comparison of the beamwidth of the
ytical solution and the source superposition method
3 elements per wavelength. The large errors at a ka

2 are associated with the sharp jump in beamwidth,
this level of error predicted by Equation (7) is
ed acceptable for most purposes. 

Figure 8. Error in the beamwidth with mesh
density 3 elements per wavelength.



[3]

[4]

[5]

[6]

[7] 

[8] 

[9] Figure 9. Beamwidth for analytical solution and
source superposition 3 elements per wavelength.

Conclusions
Boundary element numerical models of a 45º

spherical cap mounted on the surface of a sphere have
been developed, which accurately model the beamwidth
over the frequency range simulated. The source
superposition technique is found to give similar results to
the direct BEM, but is 3 to 6 times faster, with a minor
loss of accuracy.

[10]

[11]

[12]A major finding of this work is that far field solutions
that calculate beamwidth do not need as high a mesh
density as traditionally associated with the BEM, 
reducing calculation time dramatically without
compromising accuracy. 

[13]

[14]This work can be regarded as verification [20],
ensuring that the correct equations are solved by the
software. The next stage of the work, validation, that is
comparison to experiments to see how well the equations
represent the physical system, is yet to be undertaken for
the source superposition technique and beamwidth. It
should be noted, however, that the source superposition
technique is well validated for calculations of radiated
acoustic power [10], and that accurate calculations of
power imply that the far field is correctly modelled. The
source superposition technique is expected to perform
well when calculating beamwidth for models other than a
simple sphere.

[15]

[16]

[17]
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