

EPA GUIDANCE NO. 8 ENVIRONMENTAL NOISE

Draft for public and stakeholder review

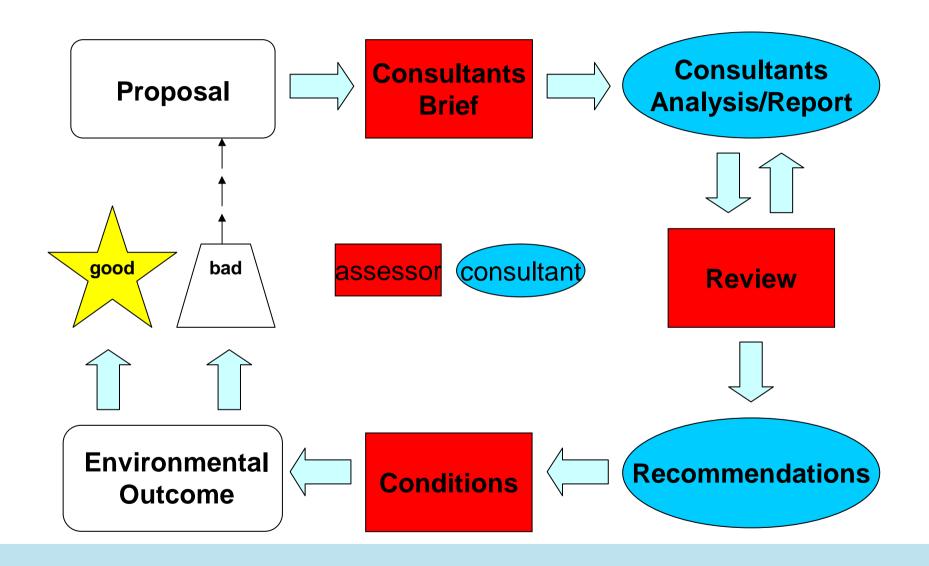
Seminar

Presented by Environmental Noise Management and SVT Engineering Consultants

25 June 2007

Overview

- Development of Guidance 8
- EPA policy additions
- Screening procedure
- Noise modelling
 - Default conditions for modelling
 - Comparison of ENM and SoundPlan
- Reporting noise assessments



Guidance 8 arose from the need for consistency and certainty in the EPA's assessment of proposals involving noise

Guidance 8 – Purpose and Objectives

Purpose –

- Protect the noise environment
- Ensure proposals meet relevant noise/vibration standards
- Provide certainty in EPA process
- Present EPA position to stakeholders

Objectives –

- Significant noise impacts identified and addressed in a consistent manner
- Proposal can be managed to meet noise regulations and acceptable standards
- Continuous improvement and ALARP principles

Guidance 8 – Scope

- Addresses noise from premises or public places
 - Proposals required to meet noise regulations
 - Proposals required to meet other acceptable standards but excluding transport noise
- Transport noise not included
 - Road and rail noise draft State Planning Policy
 - Proposal increases traffic EPA Guidance 14 (preliminary)
 - Aircraft noise Perth and Jandakot: State Planning Policies
 - Regional airports future EPA Guidance

Guidance 8 - 1998 draft

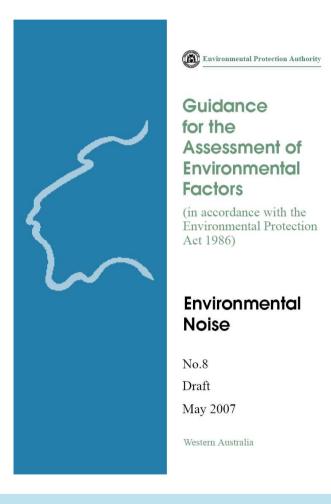
- Defined "worst case" for noise prediction
 - Worst 2% of worst month
- Default meteorological conditions
 - Day: 4m/s wind
 - Night: 3m/s wind and 2degC/100m temperature inversion
 - Based on Cullacabardee data
 - Alternative conditions based on site-specific met. data
- Screening procedure
- Reporting requirements

DOIR/SKM Review of 1998 Guidance

- Is Cullacabardee data representative of WA?
 - Collie and Kwinana yes
 - Coastal areas no inversion for onshore winds
 - Arid areas?
- Are the worst-case conditions based on site-specific data workable?
 - Not really
 - Removed from 2007 draft Guidance

1998 Guidance review – SVT model comparison

- Do ENM and SoundPlan predict the same levels?
 - Treat meteorological conditions differently
 - ENM predicts slightly higher levels, especially with barrier
- Default conditions for SoundPlan?
 - Day: Pasquill Stability Factor "E"
 - Night: Pasquill Stability Factor "F"



1998 Guidance review – EPA policy positions

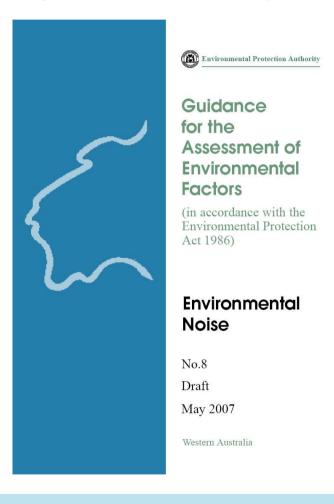
- Proposals needing to meet assigned levels
 - Cumulative noise assessment
 - Non-compliance with assigned levels
 - Planning for new residential developments
- Proposals meeting other acceptable standards
 - Construction noise
 - Wind farms
 - Sporting/entertainment facilities
 - Ground vibration
 - Indoor noise levels

New draft Guidance 8 – May 2007

Cumulative noise assessment

- Cumulative noise should meet assigned levels
- If assigned levels already exceeded, must meet the "5dB below" requirement of reg 7(2)
- If exceedance is from wind, fauna, ocean, traffic, then don't need to meet "5dB below"
- Large industrial estate, proposal should meet a target below the "5dB below" with objective that cumulative noise emission meets assigned level
- Planning for large industrial estates: notional 3km buffer

- Proposal causes increase in assigned levels
 - Assigned levels determined by influencing factor (IF)
 - Proposal may introduce new "Industrial" land into 450m radius, increasing IF
 - Proposal could then meet the new assigned level but still cause impact
 - EPA position is that increase in IF should be identified as part of impact of proposal
 - Noise emissions should be below new assigned level, as far as practicable


- Non-compliance with assigned levels
 - EPA mindful of impacts, especially health impacts
 - Proposal for upgrade of existing non-compliant plant
 - Provide Noise Improvement Plan
 - New plant should by itself be below assigned levels
 - If can't practicably comply, apply under noise reg 17
 - Minister's approval to exceed assigned levels
 - EPA will assess reg 17 in parallel with Part IV

- Planning proposals new residential areas
 - EPA will provide advice rather than formally assess
 - Buffers should allow industry to comply with minimum industry footprint
 - Buffers should be robust ideally owned by Industry
 - If existing industries can't practicably comply, then design development so indoor and outdoor noise complies, as far as practicable

EPA Policy – other acceptable standards

Construction noise

- Comply with assigned levels where practicable
- If can't comply, use noise reg 13 as basis
- Activities that EPA regards as construction work
 - Erection of barrier/earth bund for noise
 - Topsoil removal to 5m depth, except if topsoil is a product
- Removal/dumping of overburden is not construction work

Wind farms

- May need to assess noise at wind speeds >4m/s "worst case"
- Noise generation may increase with wind speed
- Assessment should be done to South Aust Guidelines
 - Measure ambient noise at a range of wind speeds
 - Correlate ambient noise with wind speed
 - Predict wind farm noise at range of wind speeds
 - Wind farm noise <35dB(A) or 5dB above ambient

- Sporting and entertainment facilities
 - Facilities for motor sports, shooting and concerts
 - EPA recognises that noise reg amendments are in process to address these types of facilities
 - EPA may recommend Ministerial Conditions that differ from the noise regs as interim measure
 - Conditions would require a Noise Management Plan
 - Number /times/types of events
 - Noise limits and control measures
 - Community complaint and information procedures

Ground vibration

- "Noise" includes vibration
- May be perceived as "shaking" or "regenerated noise"
- Building damage is a civil not environmental matter
- Guidance 8 sets some criteria for blasting
 - Day: 10mm/s any blast, 5mm/s for 9 out of 10 blasts
 - Night: 1mm/s any blast, 0.5mm/s for 9 out of 10 blasts
 - Community complaint and information procedures
- Construction/industrial should meet AS2670.2 Annex A

- Indoor noise levels
 - Mainly relates to
 - planning proposals;
 - noise insulation is to be provided for noise-sensitive buildings; and
 - assigned levels under noise regs don't apply.
 - Example: new residential near major concert venue
 - Indoor noise should meet "satisfactory" level in Table 1 of AS2107:2000
 - Exception that L_{Aeq} (average) level in bedrooms
 <35dB(A)

Natural quiet

- Protection of important places of quiet
- EPA may set an "aspirational goal" noise level
- Example of Hearsons Cove on Burrup Peninsular
- Goal would consider
 - Environmental value of the area
 - Existing ambient noise levels
 - Human/animal activities in the area
 - Risk that noise immissions would be intrusive

- Impacts on animals
 - EPA concern about impacts on rare/threatened species
 - EPA notes
 - There is limited research data on noise and animals
 - Many animals appear to habituate to noise
 - Precautionary approach based on risk assessment
 - Identify animal populations at risk
 - Conduct risk assessment to estimate likelihood of impacts
 - Example: Woodside Scott's Reef seismic test proposal

Guidance 8 – EPA policy positions – General policy requirements

- Special considerations for residences
 - EPA will assess residences as follows
 - Unoccupied but habitable need to comply
 - Occupiers absent by agreement no need to comply
 - Owned by proponent but sub-let need to comply
 - Sub-let to employee meet goal for construction camps
 - Construction camp on same premises as proposal
 - Goal for sleeping areas: $L_{A 10} 40dB(A)$, $L_{A max} 50dB(A)$
 - Construction camp on separate premises: use reg 13

Guidance 8 – EPA policy positions – General policy requirements – consultation

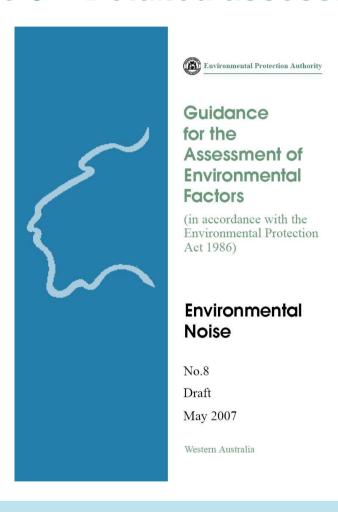
Community must be consulted –

Before and during Part IV assessment

Technical data will be presented clearly and accurately

Community concerns documented and addressed

Concurrent reg 17 application, community understands –


Noise reduction measures already done/in progress

Noise limits being applied for

They have input into noise ameliorative measures

Guidance 8 – Detailed assessment of noise

Guidance 8 – Noise Modelling

Why Model?

- Reliable measurements cannot be readily obtained.
- Predictive tool for EIA and land use planning
- Assess impact on a number of receivers.
- Compare noise reduction scenarios.
- Investigate meteorological effects.

Noise Modelling Inputs – the sources

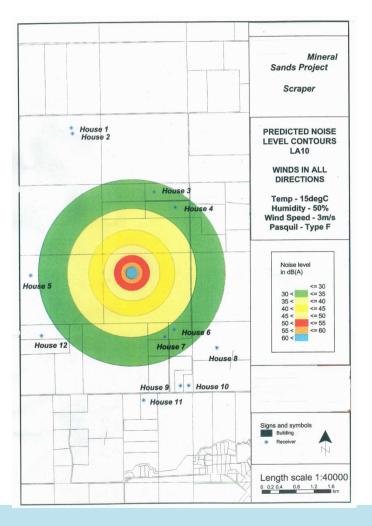
- Shape point, line (conveyor) or surface (wall/roof)?
- Directivity radiates sound equally in all directions?
- Spectrum energy at high or low frequencies?
- Sound power levels average or maximum values?
- Location on the map and height above ground
- Complex sources may be split into several components

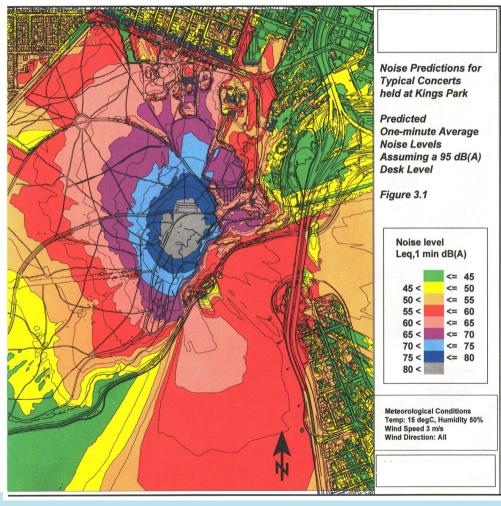
Noise Modelling Inputs – the site

- Natural topography
- Man-made changes mining pits, overburden dumps
- Noise barriers noise walls, buildings (not trees!)
- Ground absorption hard (reflective) or soft (absorptive)

Noise Modelling Inputs – meteorological data

- Temperature
- Humidity
- Wind speed
- Wind direction (or all directions at once)
- Temperature inversion strength or stability factor
- "Surface roughness" (affects wind gradient)




Noise Modelling – sound propagation factors

- Distance (6dB per doubling of dist from point source)
- Air absorption (greater at higher frequencies)
- Wind speed (propagation increases with speed)
- Wind direction (downwind vs upwind)
- Temperature gradient (positive gradient enhances propagation due to downward bending)
- Ground absorption (negated by temperature inversion)
- Barrier attenuation (negated by temp inversion)

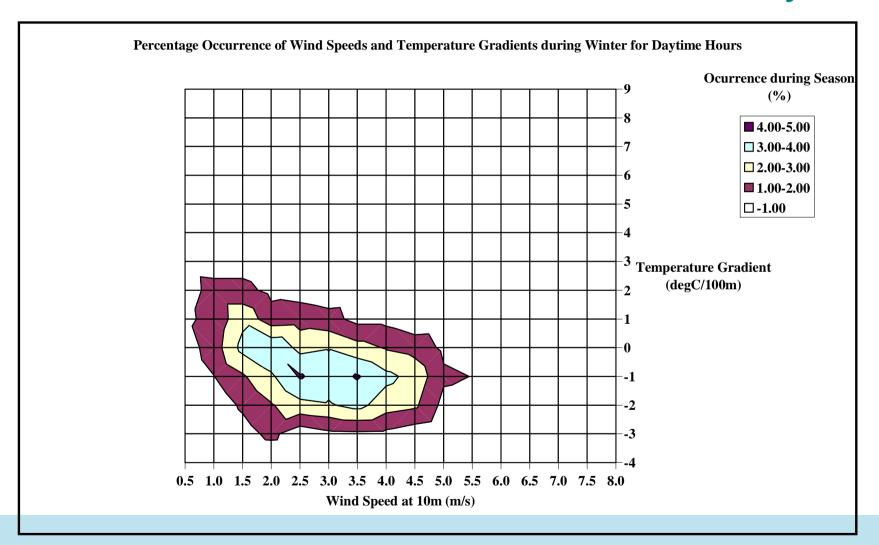
Simple and Complex noise modelling

Noise modelling – Implications for Guidance 8

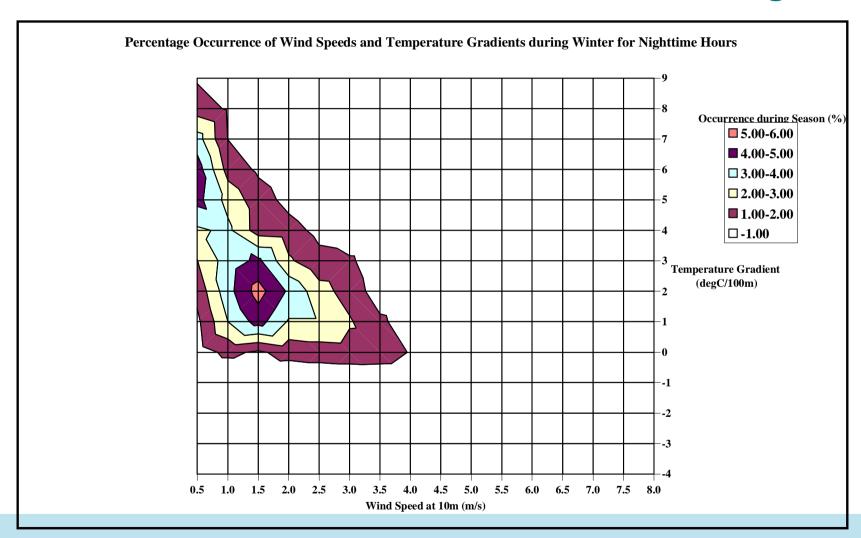
- Need recognised, skilled person
 - AAS or AAAC member
- Recognised acoustic modelling software
 - ENM and SoundPlan most common in WA
- Consistent meteorological conditions for model
- Well-documented report

1998 Guidance – Default meteorological conditions

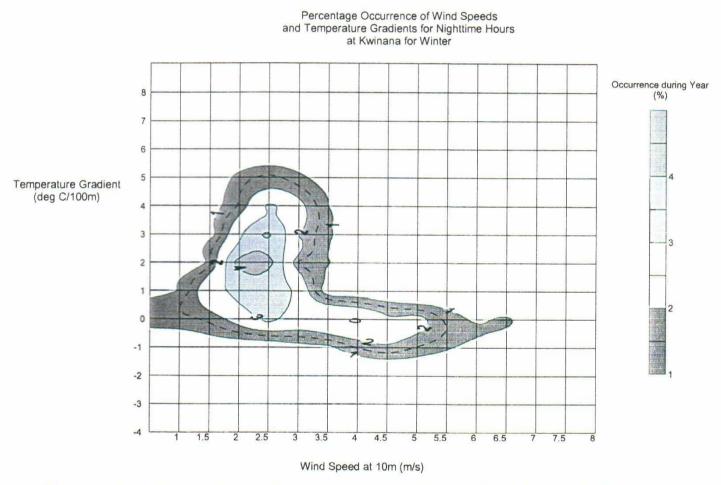
- Defined "worst case" for noise prediction
 - Worst 2% of worst month
- Default meteorological conditions
 - Day: 4m/s wind, no temp inversion
 - Night: 3m/s wind and 2degC/100m temp inversion
- Site-specific data could be used
 - For worst month, select % downwind incidence "I"
 - Model for speed V = I 2 m/s, up to 4m/s day or 3m/s night
 - Model temp inversion T = 5 V degC/100m


Guidance 8 – Default meteorological conditions

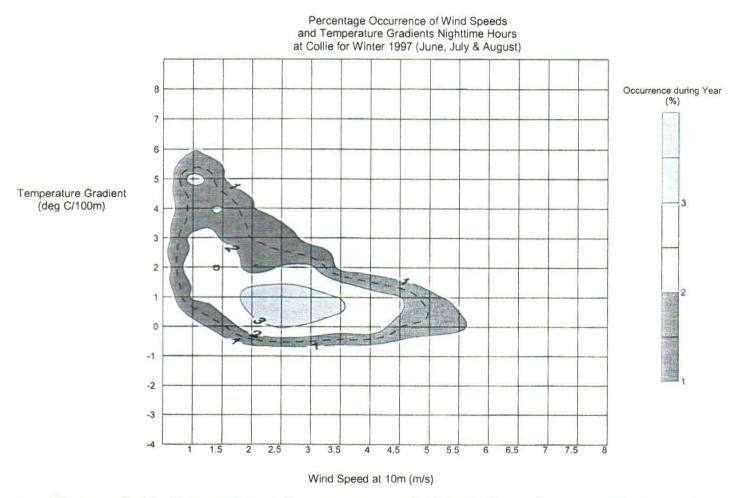
Where did they come from and are they representative of WA?



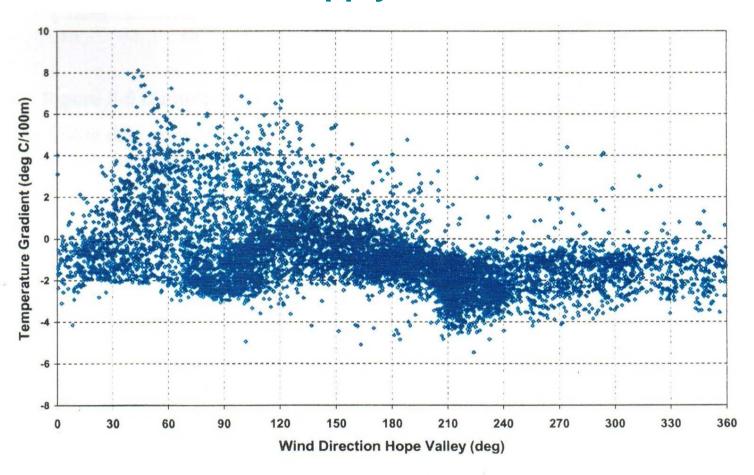
1998 Guidance - Cullacabardee data - Winter/day



1998 Guidance - Cullacabardee data - Winter/night


1998 Guidance – Cullacabardee data cf Kwinana

■ Figure C-6 Percentage Occurrence of Wind Speeds and Temperature Gradients for Night Time Hours at Kwinana During Winter


1998 Guidance - Cullacabardee data cf Collie

■ Figure C-11 Percentage Occurrence of Wind Speeds and Temperature Gradients for Night Time Hours at Collie During Winter

Does worst case apply in all wind directions?

■ Figure 5-4 Temperature Gradient (deg C/100m) versus Wind Direction at Kwinana

Does worst case apply in all wind directions?

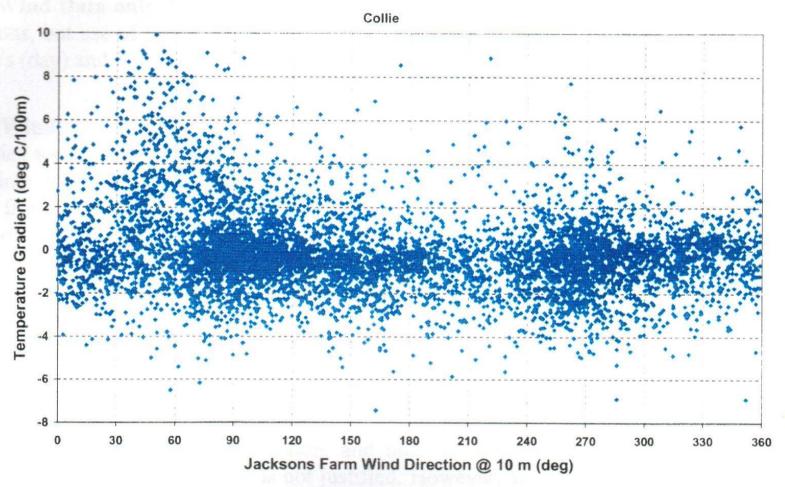
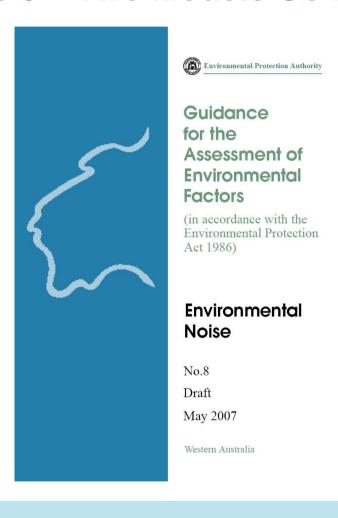


Figure 5-6 Temperature Gradient (deg C/100m) versus Wind Direction at Collie

DOIR/SKM Review of 1998 Guidance – Is Cullacabardee data representative of WA?

- Kwinana and Collie yes
 Guidance 8 retains 1998 default conditions
- Arid areas need to study: not done yet
 Guidance 8 use default conditions
- Onshore winds near coast no temp inversion
 Guidance 8 recognises site met. data
- Inland (Collie) temp inversion all wind directions
- Study Culla data to confirm on coastal plain: not done
 Guidance 8 inland assume temp inversion



DOIR/SKM Review of 1998 Guidance – Is the site-specific procedure workable?

- Analysis of Kwinana and Collie data
 - Site-specific procedure led to the *default values* for wind speed and temp inversion (3m/s, 2degC/100m), and therefore provided little value
- Monthly data too sparse need seasonal data
- Wind direction angle not clearly defined
 Guidance 8 removed formulae for site-specific meteorological data use default values
 Guidance 8 recognises submissions based on site met. data or propagation measurements

Guidance 8 – Two Models Go Head-to-Head!

SVT Review of Guidance 8 Meteorological Factors

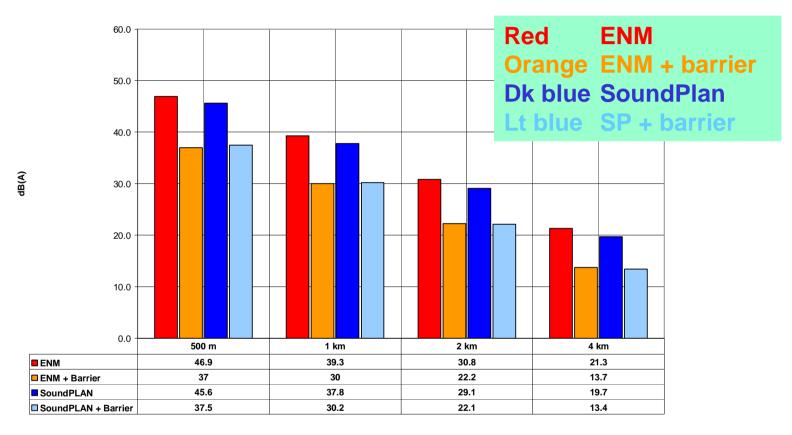
Jim McLoughlin SVT Engineering Consultants

Model	Advantages	Disadvantages
SoundPlan	 Good presentation. Easy to use. Can show wind in all directions, so needs only one map. 	 Generally less conservative than ENM. Cannot directly input some detailed weather conditions.
ENM	 Good for noise source ranking. Verified and accepted by State EPAs. Individual contour map for specific weather conditions. 	 Results in lots of contour maps from various worst case wind directions. Difficult to use.

Item	ENM	SoundPlan
Temp. inversion effect	 Uses temp diff. & wind Temp diff degC/100m Contin. variable, capped Data: Parkin & Scholes Wind & temp effects additive 	 Uses Met.Category 1-6 Based on Pasquill Stability Step change Data: CONCAWE Wind & temp effects separate
Met. effects and other factors	 Met effects can negate barrier attenuation Influenced by ground surface roughness Influenced by large source height 	 Met effects independent of presence of barrier No influence from ground surface roughness No influence from source height

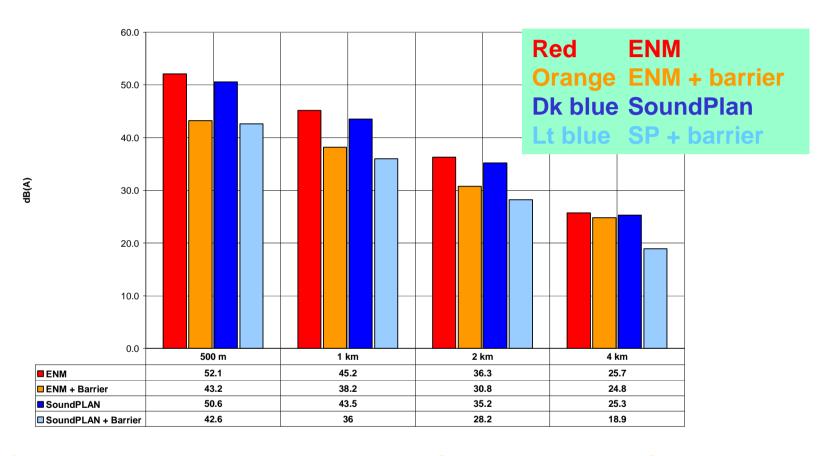
SVT Review – SoundPlan vs ENM – equivalent inputs

Guidance 8 Default Conditions	ENM Input Parameters		Equivalent SoundPLAN Parameters		
	Wind Speed (m/s)	Inversion Rate (deg C /100m)	Wind Speed (m/s)	Pasquill Stability Class	Met. Category
Day	4	0	4	E	6
Night	3	2	3	F	6



SVT Review – SoundPlan vs ENM – outputs

- Noise predictions
 - Calm and default meteorological conditions
 - Day and night
 - Distances: 500m, 1km, 2km, 4km; 1.5m above hard ground
- Three source spectra at 110dB(A) sound power
 - High frequency dominates
 - Flat frequency spectrum
 - Low frequency dominates (typical industry)
- With and without 3m noise barrier
 - Barrier 15m from source
 - Barrier length 100m


SVT Review – SoundPlan vs ENM – outputs

Comparison of Results for Calm Night-time Conditions – Low Frequency Spectrum

SVT Review – SoundPlan vs ENM – outputs

Comparison of Results for Worst-Case Night-time Conditions

– Low Frequency Spectrum

SVT – SoundPlan vs ENM – dB(A) comparisons

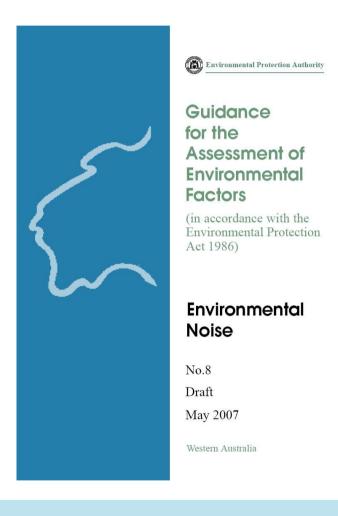
Model (Low freq spectrum, night, at 2km)	ENM	SoundPlan	ENM with barrier	SoundPlan with barrier
Calm	0 (Ref)	-1.7	-8.6	-8.7
Worst case	+5.5	+4.4	0	-2.6

ENM vs SoundPlan – Conclusions from SVT Review

- Equivalent model input parameters can be set
- Similar predicted levels for calm
- Met effects independent of other effects in SoundPlan but not in ENM
- Barrier causes greatest difference in predicted level
- No simple conversion factor between models
- Met effects greatest at different frequencies
- ENM met effect constant after 616m, but keeps increasing with SoundPlan

Guidance 8 – Implications of SVT Review

- Equivalent model input parameters
 - Guidance 8 adopts SVT proposal for SoundPlan
- Both calm and worst case models should be done
 - Has not been adopted into Guidance 8 (so far)
- Barriers must be clearly documented
 - Noted in Guidance 8, P18
- Standard for calculating air absorption should be specified to be ANSI S1.26 in SoundPlan –
 - Has not been adopted into Guidance 8 (so far)



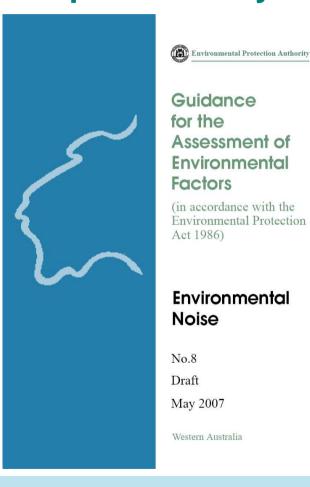
Guidance 8 – Implications of SVT Review (cont)

- Statement about 11dB(A) enhancement should be removed
 - Removed from Guidance 8
- Other models in SoundPlan should be studied, eg. Nord 2000 and Gauss Beam, both of which allow wind and temperature gradient inputs –
 - Has not been studied (so far)

Guidance 8 – Other sections

Guidance 8 – Screening assessment (Section 4)

- Assists proponents and environmental consultants to decide if noise needs detailed assessment
- Retained from 1998 with some updates
- Considers
 - Likely level of community concern
 - Buffer distances in Guidance 3
 - Estimated operational noise
 - Out-of-hours construction work
 - Blasting
- Appendix 1 worksheet



Guidance 8 – Detailed assessment (Section 5)

- Details technical aspects of modelling
- Also, Guidance on -
 - Measurement of ambient noise
 - Other activities in proposal, eg. reversing beepers
 - Blasting and construction noise
- Emphasis on good documentation
 - Assigned noise level calculations (new)
 - Inputs and results of noise modelling
 - Noise reduction measures
 - Content of acoustic consultant's report (Appendix 2 new)

Guidance 8 – Your comments? Open to 2 July!

