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ABSTRACT 

As the blades of a propeller pass through the water they produce characteristic amplitude modulated random noise 
signals which can be detected using sonar. It has recently been shown that the cyclostationary properties of this signal 
can be exploited to detect the presence of the propeller craft in significant extraneous noise. A detection technique 
based on the Cyclic Modulation Spectrum was shown to offer advantages over existing detection techniques in that 
no user interaction was required to design band pass filters, and superior frequency resolution was available to more 
accurately identify shaft and propeller pass frequencies. This technique has subsequently been developed to further 
exploit the cyclostationary properties of the signal by designing statistical thresholds which support automatic detec-
tion. This paper provides an overview of the progress of the cyclostationary detection work presented to date, and in-
troduces a further development: exploiting cyclostationarity to determine the range, heading and speed of the surface 
ship. This concept is based on array processing using the cyclic autocorrelation function. The performance of this 
technique is demonstrated using simulation and the work is placed in the context of an overall detection and identifi-
cation framework. 

 
INTRODUCTION 

This paper presents an overview of the progress made in 
developing a detection and identification framework based on 
cyclostationary signal processing. The first section provides a 
summary of the detection methodology based on the Cyclic 
Modulation Spectrum (CMS) (Hanson et al, 2008), which 
form the basis for all subsequent developments. The second 
section briefly summarises the statistical thresholds devel-
oped to support automatic detection (Antoni and Hanson, 
2009), and the third section presents the foundations for esti-
mating the range, heading and speed of the ship based on 
cyclostationary detection-of-arrival estimation. 

1. CYCLOSTATIONARITY FOR DETECTION OF 
PROPELLOR CRAFT 

Of key interest to submariners is the ability to detect the 
presence of surface ships while remaining undetected them-
selves. To this end, passive detection techniques have been 
developed whereby the surface ship is detected, and in some 
cases classified, based on its noise emissions which are re-
corded by hydrophones on the submarine.  

Detection is impeded when the signal from the ship is lost in 
the noise, which can occur when the marine environment is 
particularly noisy and/or when the ship is distant from the 
submarine. In order to maintain contact with a target vessel, 
the detection must rely on some form of signal processing to 
enhance the acoustic signature of the ship and attenuate the 
extraneous components in the sonar signal.  

Propellor Noise Signal 

The principal source of acoustic energy in the propeller sig-
nal is provided by cavitation (Sharma et al, 1990). Cavitation 
is a process whereby bubbles are drawn out of the water by 
pressure gradients on the blade surface and edges. These 

bubbles are unstable, and it is their collapse that produces the 
noise. The spectral content of propeller cavitation noise is 
quite broadband, with significant energy out to at least 
100kHz, as shown in Figure 1. 

 
Figure 1 Typical propellor noise spectrum (reproduced 
from data scaled from Fig. 5 in Sharma et al, 1990) 

The degree of cavitation is related to the water pressure 
which varies with depth. Therefore, the cavitation noise will 
modulate as the propeller blade rotates through varying water 
depth. The propeller signal is thereby comprised of amplitude 
modulated cavitation components, with a modulation period 
akin to the propeller frequency. Expressed another way, the 
propeller signal can be seen to be made up of a broadband 
carrier component modulated by the periodic blade rotation. 
The challenge faced by passive detection techniques is to 
extract the periodic component. 
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The Search for Hidden Periodicity 

The quest for passive identification of propeller craft from 
sonar signals can be restated as the search for hidden perio-
dicity in (presumably) uncorrelated noise. The periodicity 
arises from the rotation of the propeller blades, and the un-
correlated and often broadband noise is a feature of the ma-
rine background acoustic environment. 

Signals combining random and periodic components are 
commonly encountered in e.g. mechanical applications. Ma-
chines with rotating components such as shafts, gearboxes 
and bearings are common, and a principle feature of condi-
tion monitoring of gearboxes and bearings, structural dynam-
ics involving rotating machinery and vehicle dynamics, is the 
separation of these random and periodic components. The 
simplest technique for achieving this separation is time syn-
chronous averaging. This involves taking the ensemble aver-
age of sections of the signal which are equal in length to the 
period of the harmonic component of interest. All other com-
ponents are diminished by the averaging, leaving only the 
periodic component (see e.g. Peeters et al, 2007). This tech-
nique demands that the period is both precisely known and 
constant, which may not be the case in blind mechanical 
applications such as passive detection. If the cycle could be 
readily identified, then order tracking could be employed to 
overcome any variation in the period of the harmonic com-
ponent, but this is unlikely to be the case in such a noisy en-
vironment. 

Another popular technique for the separation of random and 
periodic components has been self-adaptive noise cancella-
tion (Antoni and Randall, 2004a) which in recent times has 
been refined in the form of the Discrete-Random Separator 
(DRS) (Antoni and Randall, 2004b). The DRS exploits the 
difference in correlation length between the random and peri-
odic components in the signal to design an H1 style filter 
which extracts the periodic components in the frequency 
domain. In this way it is not susceptible to changes in the 
cycle of the periodic component, and does not rely on the 
precise identification of its period. Its utility was demon-
strated through industrial applications involving modal analy-
ses of a paper machine (Antoni, et al, 2004) and a stadium 
cantilever stand (Hanson et al, 2007). 

Another technique for separating periodic components from 
broadband noise is liftering in the cepstrum domain. In the 
cepstrum of such a signal, the periodic components would 
manifest as a train of rahmonics which can be removed by 
liftering. The signal can then be transformed back to the fre-
quency or time domain and will comprise of only its random 
constituents. This technique has been applied to echo re-
moval, double bounce removal from impact hammer re-
sponse signals, and many machine condition monitoring ap-
plications (see e.g. Randall, 2000 and Gao and Randall, 
1996). Indeed, it is already used in underwater acoustics to 
remove the first reflection components from sonar signals 
recorded in shallow water (Coates, 2001). 

A different technique, developed empirically in the field of 
underwater acoustics, is known as DEMON processing (DE-
tection of Modulation On Noise) which is employed by sub-
mariners to detect the presence of propeller craft. It uses the 
FFT of the envelope of band pass filtered sonar signals to 
emphasise the modulation in time of the pressure signal (see 
e.g. Coates 2001). This technique appears to be largely em-
pirical, with few papers in the literature. Recently an exten-
sion to the technique was made by Li and Yang (2007) who 
employ higher order statistics to suppress Gaussian noise.  

An example of the principles of DEMON processing is 
shown in Figure 3. Here is represented an amplitude modu-
lated broadband signal and its corresponding spectrum, which 
is basically white in the frequency range of interest, i.e. the 
modulation does not manifest as identifiable harmonics. Also 
shown is the envelope of the band pass filtered signal, and its 
spectrum, in which the first harmonic of the modulation fre-
quency is clearly evident. By DEMON processing therefore, 
the periodic modulation is transformed into a discrete fre-
quency component which can be identified in the spectrum.  

 
Figure 2 periodically modulated broadband signal (top), 
its spectrum (solid line) and the spectrum of its envelope 
(dots) (bottom) 

Expressed in another way, DEMON processing approaches 
the search for hidden periodicity phrased above, by attempt-
ing to transform the second order periodicity inherent in the 
propeller signal to first order periodicity through the signal 
envelope. By so doing, long established time-frequency sig-
nal processing techniques can be applied. Significant advan-
tages exist however, in utilising the second order periodicity 
explicitly. Indeed, an entire toolbox is made available by 
recognising that the amplitude modulated propeller signal 
belongs to a special class of signals known as cyclostation-
ary.  

Cyclostationarity 

The term “cyclostationary” refers to a special class of non-
stationary signals which are random in nature, but exhibit 
periodicity in their statistics. A first order cyclostationary 
signal (CS1) will exhibit periodicity in its first order statis-
tics, i.e. its ensemble mean will be periodic; at the second 
order, its autocovariance. Consider a burst random signal; the 
first order statistics of the signal, i.e. the ensemble average 
over one on / off cycle, is zero and so not periodic. However 
the autocovariance (a second order statistic) of the signal, as 
represented in Figure 3, can be seen to exhibit periodicity in 
time t. Therefore, this signal may be described as second 
order cyclostationary (CS2).  

Of particular importance to this work is the cavitation of 
propeller blades as they pass through the water. Like the 
burst random signal above, the cavitation from each blade 
pass may be considered as broadband and random, but they 
occur in a periodic fashion related to the shaft speed and are 
cyclostationary at the first and higher orders. 

An important property of a cyclostationary signal is the cy-
clic period “T”, which is the period of repetition observed in 
the statistics and is often described by its frequency domain 
analogue, the cyclic frequency “α”, where 1

Tα= . 
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Figure 3 Periodicity in the autocovariance of a second 
order cyclostationary signal 

Correlation in the Frequency Domain 

Another way to examine cyclostationarity is through the con-
cept of correlation in the frequency domain, as explained by 
Antoni (2008). Antoni examines a stationary random carrier 
signal modulated by a harmonic function of period 1/α, as 
shown in Figure 4. 

 

Source: (Antoni, 2008) 

Figure 4 Correlation in the frequency domain of a ran-
dom carrier signal with harmonic modulation 

Given that the signal is stationary random, we would expect 
that non-zero correlation exists only for the case where 

21 ff = , i.e. where the corresponding frequency compo-
nents in the two signals are aligned in the correlation. Indeed, 
as Figure 4 reveals, the two signals exhibit correlation along 
the line 21 ff = . In addition however, it can be seen that 
correlation exists for either signal shifted by α (nb: actually 
any integer multiple of α). Antoni expresses this relationship 
in reverse, explaining that it is the spectral components 
spaced apart by α which are interfering in such a way to pro-
duce the periodic modulation in the time domain. 

This correlation can be exploited to identify the propeller 
components in a noisy sonar signal. Rather than focusing on 
the temporal evolution of the modulation (cyclic) frequency, 

i.e. time-frequency spectrum, further insight can be gained by 
examining the frequency-cyclic frequency spectrum. 

This work makes use of the CMS, which is calculated from 
the DEMONgram (time-frequency spectrum) by taking the 
Fourier transform of the squared signal along the time axis: 

 

( ) ( ){ }2,, ftXfP t αα →ℑ=   (1) 

where α→ℑt  means the Fourier transform from time t to 

frequency α and X(t,f) is the short-time Fourier tansform of 
signal x centered around time t. 

This produces a two dimensional spectrum in terms of fre-
quency and cyclic-frequency (frequency shift). The fre-
quency domain correlation manifests as a non-zero spectrum 
at the modulation frequency, which may contain useful spec-
tral information in its own right. Only the magnitude is exam-
ined here however, as the intent is limited to detection, rather 
than identification.  

The cyclostationary technique employed in this investigation 
can be summarised in the simple block diagram shown in 
Figure 5. 

 
Figure 5 Schematic of cyclostationary propeller detection 
process 

 
It should be noted that the same uncertainty principle applies 
to the CMS as to the instantaneous power spectrum, i.e. the 
reciprocal of the time resolution Δt is the largest cyclic fre-
quency αmax that can be identified: 
 

f 4  max Δ≤ πα    (2) 

Results 

The cyclostationary detection technique was applied to a 
sonar signal of a North Sea Coaster, recorded by Professor 
Rodney Coates off the coast of the United Kingdom. The 
results of this analysis are presented in Figure 6. The CMS 
clearly identifies the shaft speed and its harmonics, and the 
blade pass frequency. 

 
Figure 6 CMS of the North Sea Coaster signal (top), 
zoom on each harmonic (middle) and mean cyclic fre-
quency spectrum (averaging along frequency axis) (bot-
tom). 
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The fine (cyclic) frequency resolution afforded by the CMS 
makes it possible to discriminate paired harmonics of shaft 
speed and blade pass – perhaps associated with two propeller 
shafts operating at slightly different speeds (in this case ap-
proximately 8rpm). Indeed, this technique allows the modula-
tion to be detected over a wide frequency region whilst main-
taining the fine cyclic frequency resolution. Techniques such 
as DEMON processing however, require that the modulation 
be detected over a relatively narrow frequency range, thus 
requiring significant guess work in designing the filter pass-
band. 

The CMS and the Cepstrum 

The cepstrum is sometimes defined as the inverse Fourier 
transform of the squared signal:- 

( ){ }1 2logxc X−= ℑ   (3) 

In this way, the CMS and the cepstrum (apart from the log 
operation) have been confused in previous presentations of 
this work. The difference between the CMS and the cep-
strum, apart from the log operation, is the axis along which 
the second Fourier transform is applied. In the cepstrum, the 
inverse Fourier transform is applied along the frequency axis, 
therefore the cepstrum of a time vs frequency spectrum 
would produce a time-quefrency spectrum, i.e. the time evo-
lution of the cepstrum of the signal. The CMS by contrast 
produces a frequency vs frequency-shift spectrum, and in this 
way is able to discriminate components in the signal which 
exhibit correlation in the frequency domain. First order cyc-
lostationary components, i.e. periodic signals, would be re-
vealed in the cepstrum as a train of rahmonics, but second 
order components such as the amplitude modulation in the 
propeller signal would not produce rahmonics, just as they do 
not produce harmonics in an ordinary frequency spectrum. In 
this way, only the CMS can reveal the presence of the propel-
ler signal. 

This is shown by way of example in Figure 7 which presents 
the cepstrum of the North Sea Coaster signal, calculated in 
accordance with Eq. 3. 
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Figure 7 Cepstrum of the North Sea Coaster signal 

The shaft and propeller components which are clearly evident 
in the CMS are entirely absent from the cepstrum. 

2. STATISTICAL THRESHOLDS FOR 
AUTOMATIC DETECTION 

An extension to the cyclostationary detection technique, and 
an advance toward autonomous detection, is the establish-
ment of statistical thresholds for cyclostationarity that will 

indicate the presence of a ship. Thresholds for detecting the 
presence of cyclostationarity in signals have been developed 
previously for applications in e.g. telecommunications 
(Zivanovic and Gardner, 1991) and machine condition moni-
toring (Raad et al 2008). Zivanovic and Gardner propose a 
DCS (Degree of Cyclostationarity) measure based on the 
distance between the nonstationary autocorrelation and the 
nearest stationary autocorrelation. For a stationary process, 
the DCS = 0, whereas for cyclostationary signals, DCS>0. 
Along similar lines, Raad et al presented an Indicator of Cyc-
lostationarity (ICS) for cyclostationarity of order n = 1-4, 
which is based on the nth order cumulants in the signal. In 
this case, at the second order the ICS represents the energy 
normalised autocovariance of the signal, which for α>0 re-
duces to zero for the null hypothesis that the signal is station-
ary.  

The approach outlined below, and explored more fully in 
Antoni and Hanson (2009) is based on the Cyclic Modulation 
Coherence, and provides an exact threshold of cyclostationar-
ity as a function of all the computation parameters. It has the 
advantages that it closely mimics statistical tests based on the 
cyclic spectral coherence which are optimal in several in-
stances, it is extremely fast to compute, and it applies when-
ever the cyclic frequency bandwidth to scan is not greater 
than about 4 times the frequency resolution Δf, which is a 
common situation in most sonar applications.  

Definition of the cyclic modulation coherence  

The cyclic modulation coherence (CMC) is a power-
normalised version of the CMS. The CMC intends to ap-
proximate the cyclic spectral coherence while offering a 
much faster way of computation by making a systematic use 
of the discrete Fourier transform (DFT) and its related FFT 
algorithm. 

The CMC is defined as  

 

( , )( , )
(0, )

x

x

P fCMC f
P f
αα = ,  (4) 

where Px(α,f) was is the CMS. The CMC therefore is the 
CMS normalised by the estimated PSD so as to eliminate all 
scaling effects. Therefore the capability of detecting the pres-
ence of cyclostationarity in some frequency band will not 
depend on the actual energy level in that band, but only 
whether energy fluctuates therein periodically or not. Note 
that the normalisation is also equivalent to computing the 
CMS of the whitened signal, which is a customary preproc-
essing step in most detection tests. 

The CMC in the presence of cyclostationarity 

In order to understand the behaviour of the CMC in the pres-
ence of cyclostationarity - and in particular how it relates to 
the cyclic spectral coherence - let us investigate its expres-
sion in the simple case where signal x(n) exhibits cyclosta-
tionarity at a single and arbitrary cyclic frequency α0.Under 
some mild assumptions it can be shown that 

 

( ) ( ) ( )10
0

( )( , )
2 ( )I I p

x

A fCMC f D R D R R O I
S f

α α α α −= + − +

     (5) 

where  
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i) the Dirichlet kernel, 
( 1) 1( ) sin( ) sin( )j R I

ID R e RI Rπαα πα πα− − −= K
 is the only function of α and therefore controls the cyclic 
frequency resolution, i.e. 1 1IR LαΔ ∼ ∼  as re-
turned by the width of its main lobe,  

ii) the “cyclostationary” signal-to-noise ratio (SNR) 

00 ( ) 2 ( ) 1xA f S f≤ ≤  returns the strength of the 
cyclostationary component relatively to the signal power 
at frequency f,  

iii) the residual estimation noise Op(I-1) has magnitude 
that vanishes like 1/I in probability. 

Therefore, because DI(Rα) rapidly tends to a train of discrete 
delta functions with period 1/R, 

 

0
0

1, 0
( )( , ) , ,  for any interger 

2 ( )
0, elsewhere.

I
x

A fCMC f p R p
S f

α

α α

⎧ =
⎪
⎪→ +⎨
⎪
⎪⎩

     (6)  

This is fine enough to detect the presence cyclostationarity at 
α = α0, but not fully satisfying since the CMC also returns 
non-zero values at all other cyclic frequencies α = α0 + p/R, 
thus erroneously indicating other cyclostationary components 
where there are not. The reason stems from undersampling 
the STFT by factor R which entails frequency aliasing in α. 
In order to gain more insight into this issue and see how to 
solve it, it must be realised that A0(f) in Eq.6 is obtained as  

 

0
0 0( ) ( , )

2 w x
A S fκ α α= ,  (7) 

 

where 0( ) ( ) (0)w w wR Rκ α α=  with 
1 2 2
0

( ) ( )N j n
w n

R w n e παα − −
=

=∑  and where Sx(f,α0) is the 

cyclic power spectrum defined as [6] 

 

*
0 0

1( , ) lim lim ( , ) ( , )
(0)x N i N iN I

w

S f X t f X t f
I R

α α
→∞ →∞

= −
⋅

,     (8) 

 

with * the complex conjugate symbol. In Eq.8, κw(α0) is seen 
to act as a low-pass filter in α which gradually brings down 
A0(f) to zero as α0 increases. For instance, for a N-long Han-
ning window, κw(0) = 1 and 0 max(| | ) 0wκ α α� �  with 

max 4 Nα ∼ . The reason for this becomes clear if one 
construes the STFT XN(ti,f) as a narrow band-pass filtered 
signal in band [f-Δf/2, f+Δf/2] where Δf ∼ 1/N. Hence, the 
narrower the band, the slower the variations of the energy 
flow |XN(ti,f)|2 through it, with cut-off frequency 

max| | 4 fα α≤ Δ∼ . The existence of such a cut-off fre-
quency is actually a chance to reject the undesirable aliased 

cyclic frequencies α = α0 + p/R, |p| > 1 in Eq.6. This is 
achieved provided that 1/R > maxα , i.e. R ≤ N/4 with a Han-
ning window, meaning that at least 75% overlap should be 
set when computing the STFT. The CMC is then non-zero at 
α = 0 and α = α0 only, thus detecting cyclostationarity at the 
correct location.  

Statistical test 

The CMC was demonstrated to correctly detect the presence 
of cyclostationarity in a limited cyclic frequency range. In 
most sonar applications this will be fine enough, since the 
cyclic frequency of interest will usually be much smaller that 
the coarser allowable spectral resolution, i.e. 0| | fα < Δ , 
which is consistent with the previous requirement that 

0 max| |α α<  with max 4 Nα ∼ . Moreover, the CMC 
being a complex quantity in general, its squared-magnitude 
will be used for detection. The image formed by |CMC(α,f)|2 
as a function of α and f will then provide a good and fast 
visual test to check for the presence of cyclostationarity in the 
signal. Once a frequency band [f1,f2] is identified where 
cyclostationarity is present, a better statistical test is then 
given by the integrated squared-magnitude CMC (ICMC), 
namely, 

Reject the null hypothesis H0 “there is no presence of cyc-
lostationarity at cyclic frequency α0 (i.e. A0(f) = 0)” at the p 
level of significance if : 

 

2
2

0 1 0
1

1 | ( , ) | ( )
k

k p
k k

CMC f
K

α λ α−
=

>∑ , (9) 

where K = k1 – k2 with k1 and k2 the DFT bins corresponding 
to f1 and f2 and λ1-p(α0) a statistical threshold to be deter-
mined. By allowing the user to select a relevant frequency 
band where the cyclostationary SNR is high, the proposed 
statistical test will be all the more efficient. In addition, be-
cause of the integration over frequency f, the test will amount 
to comparing a function of α only against the threshold λ1-

p(α). It now remains to find the level of that threshold in the 
general case, as a function of the number K of integrated 
frequency bins, the number I of signal blocks, the shift R 
between adjacent blocks, the length N and the type of the 
analysis window w(n). 

Statistical threshold under the null hypothesis 

The statistical threshold λ1-p(α) reflects that level the ICMC 
should not exceed with a risk probability p when the signal is 
assumed stationary at cyclic frequency α. It may be found as 
follows. First, it is noticed that the CMC is asymptotically 
complex Gaussian with zero mean and variance  

 

min( 1, 1 )1
2 2 2

1 max(0, )

1( ) | ( ) ( ) | ,

            | | 1 , 

N N mN
j m

m N n m

w n w n m e
RI
f R

πασ α
− − +−

−

= − =

= −

>

∑ ∑

     (10) 

The normalised squared-magnitude CMC is then distributed 

as 2 2
2( ) 2σ α χ⋅ , where 2

2χ  is a Chi2 variable with 2 
degrees of freedom. Since the frequency bins of the DFT are 
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asymptotically independent under H0 (Brillinger, 2001), the 
sum of K Chi2 variables with 2 degrees of freedom then fol-
lows another Chi2 variable with 2K degrees of freedom. 
Hence, 

 

22
2 2

2
1

1 ( )| ( , ) |
2

k d

k K
k k

CMC f
K K

σ αα χ
=
∑ ∼  (11) 

where symbol 
d
∼  means “distributed as”. Based on this re-

sult, the statistical threshold is finally found as 
2 2

1 1 ,2( ) ( ) (2 )p p K Kλ α χ σ α− −= ⋅  with 2
1 ,2p Kχ −  the 

100(1-p)th percentile of the 2
2Kχ  distribution. 

Practical recommendations 

This paragraph aims at summarising the main recommenda-
tions for an optimal use of the proposed statistical test: 

• Disregard the first cyclic frequency α = 0 which 
always returns CMC(0,f) = 1 and may then absorb 
most of the dynamical range of the CMC. 

• Set at least 75% overlap when computing the STFT 
with a Hanning window (the question as which op-
timal window to be used for minimising cyclic 
leakage is currently under investigation). 

• If leakage is suspected, use a different fraction of 
overlap and check whether the suspicious peak re-
mains at the same cyclic frequency or not. 

• On the CMC displayed as an image in the (α,f) 
plane, select a frequency band [f1,f2] where the 
cyclostationary SNR is maximised. 

• Compute the ICMC in that frequency band and 
compare the result against the statistical threshold 
for a given p level of significance. 

• Eventually compute the “detection” SNR 

0 1 0( , ) ( )pCMC fα λ α− , a useful indicator 

for appraising the significance of the detection. 

As a final remark, it should be noted that the proposed statis-
tical test does not strictly test for the presence of cyclosta-
tionarity, but rather for the absence of stationarity -- this is a 
common feature of all similar tests that have been proposed 
in the literature. Consequently, the ICMC is likely to exceed 
the statistical threshold whenever the signal exhibits nonsta-
tionarity, but not necessarily cyclostationarity. However, it 
has been proved in [6] that cyclostationarity only can produce 
significantly high magnitudes of the cyclic spectral coher-
ence, and therefore of the CMC. In that sense the detection 
SNR 0 1 0( , ) ( )pCMC fα λ α−  may prove very useful. 

Results  

The application of the statistical thresholds described above 
is demonstrated here with an example. This simulation con-
siders four signals, each of length 32768 samples with sam-
pling frequency 10kHz; a) a stationary signal, b) a cyclosta-
tionary signal with α0 =20 Hz and SNR = -10dB, c) a cyc-
lostationary signal with α0 =20 Hz and SNR = 0dB, and d) a 
cyclostationary signal with α0 =70 Hz and SNR = 0dB. 

The integrated CMC of each of these signals is shown in 
Figure 8 where the detection performance in case (b) is par-
ticularly noteworthy considering the very low SNR in this 
case.  

 
Figure 8: integrated squared-magnitude cyclic modula-
tion coherence in the band [1000,3000]Hz in the four 
cases of Fig.3 together the statistical threshold (red dotted 
line) at the 0,5% level of significance.  

3. DIRECTION OF ARRIVAL ESTIMATION 
USING CYCLOSTATIONARITY 

Cyclostationary signal processing can also be applied to the 
problem of Direction-Of-Arrival (DOA) estimation, through 
which the bearing of a ship can be estimated using array 
processing. DOA estimation based on cyclostationarity has 
previously been applied in telecommunications in which 
signals are frequently inherently cyclostationary as modula-
tions in frequency, amplitude and phase are employed to 
convey information. Digital signals can also be rendered 
cyclostationary through oversampling. The concept presented 
below approaches the problem from a fundamental perspec-
tive, but future work will involve adapting learnings from 
telecommunications for use in this sonar application. 

A schematic overview of the DOA estimation problem is 
shown in Figure 9 in which the sound waves from the ship 
are incident on the sonar array as plane waves with a certain 
time delay between each hydrophone.  
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θ

A

B

C

 
Figure 9 A schematic representation of the DOA prob-
lem, wherein the ship is sufficiently far from the subma-
rine for the sound waves to approximate plane waves 

This time delay can be estimated using the cross-correlation 
function or from the phase of the cross spectrum between the 
signals received by each hydrophone. 

Successful estimation of the time delay depends on clear 
definition of the coherent signal components from the ship at 
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each receiver sensor. Furthermore, the sensors will receive 
signals from each independent noise source in the vicinity, 
complicating estimation of the time delays associated with 
the signals from the ship. This problem is illustrated in Fig-
ure 10, which shows an example of a cross correlation be-
tween two simulated sensor signals – each receiving a signal 
from a stationary source and an independent and non co-
located cyclostationary source. 
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Figure 10 Cross correlation between two simulated sig-
nals 

The cross correlation exhibits characteristic peaks at time 
lags corresponding to the delay time between the two sensors 
of both the stationary signal and the cyclostationary signal. In 
this particular case, the stationary signal produces the highest 
correlation, thereby potentially confounding an automated 
time delay estimation algorithm. 

This problem can be overcome using cyclostationary signal 
processing if the cyclic frequency of the ship is known. 
Rather than utilising the cross correlation (or cross spectrum 
if operating in the frequency domain), the time delay estima-
tion can make use of the cyclic cross correlation, i.e. the cross 
correlation computed at the frequency shift corresponding to 
the cyclic frequency of the ship’s propeller signal. The cyclic 
cross correlation is given by:- 
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     (12) 

where [ ],XYR n τ  is the cross-correlation function between 

signals X and Y, iα  is the ith multiple of the cyclic fre-

quency and τ is the time lag. The cyclic frequency of the ship 
propeller signal could be identified from the CMS during the 
initial detection operation. 

The effectiveness of the cyclic cross correlation is shown in 
Figure 11 which compares the cross correlation from Figure 
10 with the equivalent cyclic cross correlation. 
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Figure 11 Cross correlation (red - dash) and cyclic cross 
correlation (blue – solid) between two simulated signals 

The cyclic cross correlation exhibits a peak only at the time 
delay associated with the cyclostationary source, as the sta-
tionary source does not correlate with itself at the cyclic fre-
quency under examination. 

The cross correlation can be efficiently estimated as the in-
verse Fourier transform of the cross spectrum. It was previ-
ously shown that preweighting the cross spectrum by the 
signal coherence and extracting the phase component yields a 
clearer peak in the cross correlation and hence a superior time 
delay estimation (Gao et al 2006). This concept was extended 
in Hanson et al (2007) in which time delay estimation as 
employed for detecting the presence and location of leaks in 
underground water pipes. In (reference) it was shown that the 
phase cepstrum offered superior time delay estimation as the 
time delay manifested as a series of rahmonics, rather than a 
single peak as in the cross correlation. Although beyond the 
scope of this preliminary investigation, cyclic analogies of 
both the enhanced cross correlation estimators and the phase 
cepstrum could be applied for cyclostationary DOA estima-
tion. 

Once the time delay between sensor pairs have been esti-
mated, the bearing to the ship can be calculated from:- 

sin c
D
τθ =     (13) 

where D is the distance between the sensors. Note that each 
paired combination of sensors will yield a bearing estimate 
which, if the sensor array is sufficiently large, could be used 
to determine the range to the ship by triangulation. 

The effectiveness of the DOA estimation concept was dem-
onstrated using a simulation of a ship at a nominal distance of 
1000m from an array of three sensors. The ship was posi-
tioned at thirty degree increments with respect to the sensor 
array and the bearing to the ship estimated in each case. The 
results of this simulation are shown in Figure 12. 
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Figure 12 results of the direction-of-arrival simulation; 
location of the ship (circles) and estimated bearing from 
submarine (arrows) 

As these preliminary results reveal, the cyclic DOA estima-
tion technique was successful in identifying the location of 
the ship in each case. Note that cyclostationarity is not able to 
resolve left-right ambiguity in the DOA estimate. 

Once the bearing and range of the ship had been identified, 
the speed could be estimated by calculating the change in 
these quantities over time. Thus, the bearing, speed and range 
of the ship could all be identified through passive sonar tech-
niques. These concepts remain to be further explored. 

DISCUSSION AND FUTURE WORK 

This paper presented an overview on progress made to date in 
the development of a passive sonar technique for the detec-
tion of surface ships from submarines based on cyclostation-
arity. The fundamental detection process, based on the cyclic 
modulation spectrum, was outlined and demonstrated using 
measured signals. A statistical threshold based on the inte-
grated cyclic modulation coherence was presented and ap-
plied to simulated signals. Finally, a concept for direction-of-
arrival estimation was proposed and demonstrated using a 
simple simulation. It was explained how this concept could 
be expanded to also estimate the range, heading and speed of 
the ship. 

The focus of future work will be to further develop the statis-
tical thresholds so as to allow automatic detection of surface 
ships, and integration with the DOA estimation and CMS 
tools to provide further information on the ship. The ultimate 
aim is to develop a fully integrated tool which will also move 
some way to identifying the type of ship that has been de-
tected. 
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