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ABSTRACT

This paper looks at the recently developed Mean Differential Cepstrum (MDC) method for calculating frequency re-
sponse functions (FRF) from response signals. It has been shown to work in single-input and multiple-input scenarios,
giving both magnitude and phase information. Its applications have been largely confined to transient signals, in accor-
dance to the original definition of the MDC. The key motivation for this paper is to extend this blind system identifi-
cation method to continuously excited systems, like in most machinery in practice. The use of the Random Decrement
Technique (RDT) to pre-condition continuous signals, prior to applying the MDC method, is investigated. The idea is
to utilise the impulse like derived signals for the identification process. Qualitative comparisons between identification
outcomes using RDT derived signals and actual transient signals are presented for single-input systems.

INTRODUCTION

Operational Modal Analysis (OMA) is increasingly prevalent
over experimental modal analysis (EMA) for assessment of
structural dynamic properties. This trend can be attributed to
the significant cost associated with generating input forcing
signals and the difficulties with measuring input signals in the
operating environment. The common OMA approaches like
commercially available techniques: Polymax (Peeters et al.,
2004) and Frequency Domain Decomposition (FDD) (Brincker
et al., 2000), use the response cross-spectral matrix (CSM)
in place of frequency response functions (FRFs) for analysis.
The CSM does not give single-input single-output (SISO) in-
formation in a multiple-input multiple-output (MIMO) set-up.
Consequently, SISO curve fitting techniques (Gao and Ran-
dall, 1996) used for extracting scaled modeshapes under non
spectrally white excitations, cannot be employed.

The Mean Differential Cepstrum (MDC) methodology presented
was developed for the identification of MIMO systems from re-
sponse signals (Chia, 2007). It gives SISO information like the
FRFs and is capable of handling "non-minimum phase" sys-
tems. The identified magnitude and phase information are used
in place of FRFs for modal analysis. The development began
from the scalar definition of the MDC (Antoni et al., 2000) and
led to the definition of propagative solution sequences for both
multiple-input and single-input scenarios.

The method has been successfully applied in single-input sys-
tems using transient input signals (Chia et al., 2007). This pa-
per looks into extending the application to continuous signals
using the Random Decrement Technique (RDT). Continuous
signals generated from a simulated single-input system are pre-
conditioned with the RDT before applying the MDC method.
The identification outcome is compared to results from tran-
sient input signals for a qualitative assessment.

BACKGROUND

The Cepstrum and Differential Cepstrum are the origins of
the MDC. Their definitions and applications are introduced to-
gether with a brief description of the RDT.

Cepstrum

The term Cepstrum was first coined in 1963 and was initially
developed for echo detection (Bogert et al., 1963). In the cep-

stral domain, the source and transmission path effects in a sin-
gle input system can be separated when the input has a smooth
spectrum (Randall, 1987). The homomorphic nature of Cep-
strum, accords the input and system an additive relation as il-
lustrated in (1). The Cepstrum of the generic system equation,
Y (ω) = H(ω)X(ω) gives:

Cy(τ) = Y (τ) = F−1 (ln Y (ω))

= F−1 (ln (H(ω)X(ω)))

= F−1 (ln H(ω)+ ln X(ω))

= F−1 (ln H(ω))+F−1 (ln X(ω))

Y (τ) = H(τ) + X(τ) (1)

where X : Input t: time
Y : Output ω: frequency
H: System τ: quefrency (units of time, s)

F : Fourier transform

The Cepstrum can be defined as the inverse Fourier transform
of the logarithmic spectrum. Its homomorphic nature is the
consequent of the logarithmic operator. Examples of its appli-
cation include separation of glottal excitation and vocal tract
impulse response in speech analysis (Noll, 1964) (Oppenheim
and Schafer, 1968), separation of excitation and structural re-
sponses in gear boxes (Randall, 1984) and blind system iden-
tification (Hanson et al., 2007)

Differential Cepstrum

The Differential Cepstrum (DC) is defined as the inverse Fourier
transform of the derivative of a logarithmic spectrum (Polydoros
and Fam, 1981):

dy(τ) = F−1
(

d
dω

lnY (ω)
)

= F−1
(

Y ′(ω)
Y (ω)

)
(2)

The DC has the added advantage of not requiring phase un-
wrapping needed in the Cepstrum, but retains the homomor-
phic nature. Similar to the Cepstrum, it is utilised for echo re-
moval (Polydoros et al., 1979). Note that most mechanical sys-
tem are "minimum phase" systems where phase information
can be obtained using the inverse Hilbert transform (Papoulis,
1962)(Randall, 1987). The challenge comes when dealing with
"non-minimum phase" systems.
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Mean Differential Cepstrum

The Mean Differential Cepstrum (MDC) is defined as the in-
verse Fourier transform of the partial derivative of the logarith-
mic Spectral Correlation Density (SCD)(Antoni et al., 2000)
and can be shown to give:

dyy(τ) = F−1 (Dyy(ω)
)

(3)

where Dyy(ω) =
E(Y ′(ω)Y ∗(ω))
E(Y (ω)Y ∗(ω))

(4)

is the frequency domain MDC while E(...) is the expected
value and superscript * denotes conjugate. It is developed for a
series of stochastic/random transient signals, allowing for en-
semble averaging to remove noise. Note that (3) is identical to
(2) for a single realisation.

In subsequent mathematical expressions, the (ω) term will be
dropped for visual simplification and frequency domain oper-
ation is assumed unless otherwise stated.

The MDC method developed led to two approaches of system
identification: direct and indirect. In single-input systems, only
the former is relevant. The following shows the development of
the direct approach in the matrix form.

The following are assumed about the input excitation sources:

• mutually uncorrelated sources
• spectrally white input
• by convention have unitary power (scale indeterminacy)

(i.e. all input sources are assumed to have a power of
one. This assigns any gain to the transfer functions (FRFs)
from each source to each response DOF)

The formulation of the propagative solution sequence, for the
solution of the system matrix H, starts with the matrix MDC
of the output response vector Ỹ:

Dyy = E
(

Ỹ′ỸH
)

E
(

ỸỸH
)−1

(5)

Substituting Ỹ = H X̃,

Dyy = E
((

H′X̃+HX̃′
)(

X̃HHH
))

E
((

HX̃
)(

X̃HHH
))−1

=


H′E

(
X̃X̃H

)
︸ ︷︷ ︸

Sxx=I

HH +HE
(

X̃′ X̃H
)

︸ ︷︷ ︸
jC
[. . .]

HH


HE

(
X̃X̃H

)
︸ ︷︷ ︸

Sxx=I

HH


−1

taking into account the identity matrix term Sxx = I,

Dyy =

(
H′HH +H jC

[ . . .
]

HH

) (
HHH

)−1

post multiplying with (HHH ),

Dyy
(

HHH
)

=

(
H′HH +H jC

[ . . .
]

HH

)

Dyy H = H′+ H jC
[ . . .

]

jC
[ . . .

]
is a purely imaginary diagonal matrix and can be shown

to correspond to time displacements (Chia et al., 2005), which
can be set to zero since there is no absolute time reference in
response measurements.

H′ −Dyy H = 0 (6)

Defining the derivative as a backward difference with respect
to frequency ω , (6) can be manipulated to give:

H′ = Dyy H
H(ωk)−H(ωk−1)

dω
= Dyy(ωk) H(ωk)

multiplying by dω and isolating the H(ωk) term,

(
I−dω .Dyy(ωk)

)
H(ωk) = H(ωk−1)

(HDirOrn) H(ωk) =
(

I−dω .Dyy(ωk)
)−1

H(ωk−1) (7)

(7) is a matrix equation which solves for the system matrix
H in a propagative manner. The (kth) frequency bin value is
calculated based on the previous, (k− 1). H and the matrix
multiplicative factor has the same square dimension. The di-
rect approach based on the above original formulation can be
adapted by approximating the two terms in the multiplicative
factor to a Taylor series:

(HDirTay) H(ωk) =
(

e−dω.Dyy(ωk)
)−1

H(ωk−1) (8)

(7) and (8) are the basis of the propagative direct identifica-
tion process, using the original (HDirOrn) and the Taylor se-
ries adapted

(
HDirTay

)
formulations respectively. The identi-

fied systems are in complex numbers where magnitude and
phase information are directly obtained. For single-input ap-
plications, the scalar response signal Y is used in place of the
vector Ỹ.

Random Decrement Technique

The Random Decrement technique was introduced (Cole, 1968)
for the purpose of extracting impulse response like signals from
continuous signals.

The deterministic portion of a signal would become more preva-
lent with each Random Decrement averaging, producing a dis-
tilled, impulse response like signal. The selection of time his-
tory sections for ensemble averaging depends on the trigger
condition. They are chosen to reflect the response history of
interest and are typically:

a) zero crossing with a steep positive slope
b) zero crossing with a steep negative slope
c) crossing of a constant amplitude level

All these cases resemble initial responses from an impulse. The
first two can be used in conjunction by using the same slope
magnitude as the trigger and inverting the signal with the ini-
tial negative slope before ensemble averaging. The last trigger
condition based on a constant amplitude level is illustrated in
figure 1.
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Figure 1: Random Decrement using constant amplitude trigger

SIMULATION SET-UP

Figure 2 shows the simulated 5 degrees of freedom (DOF)
system. Its mass and stiffness matrices are based on the sys-
tem properties depicted. Responses from m3, the driving point
measurement, were used for identification.

The two input excitation cases at X were:
(i) 10 minute continuous random excitation and
(ii) 100 realisations of 4s burst random excitation (BR4s)

A positive constant amplitude level crossing was the RDT trig-
ger condition used in case (i). A slight modification was to
begin data capture at the positive zero-crossing immediately
prior to the trigger level. This level is at 50% maximum re-
sponse signal amplitude. A total of 550 sets of 16s long signals
were extracted.

6. Derivative computation process 75

Mathematically, the above equation is equivalent to equation 6.3, but in the procedural
sense, the difference operation is performed after the averaging, and only once. This
decreased number of difference operations made could mean lower rounding errors in
the computation process.

6.4 Plot of S′yy
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System properties

mass, m1 = m2 ∼ m5 = 4 kg

stiffness,
k1 = 6.30 e5 N/m

k2 = 5.62 e5 N/m

k3 = 6.03 e5 N/m

k4 = 4.68 e5 N/m

k5 = 6.60 e5 N/m

k6 = 7.50 e5 N/m

k7 = 7.82 e5 N/m

k8 = 6.50 e5 N/m

damping, ζ = 1.5%

Natural frequencies

f1 = 36.0 Hz

f2 = 83.0 Hz

f3 = 115.0 Hz

f4 = 126.5 Hz

f5 = 136.0 Hz

Diagram 6.1 shows a schematic of the system where burst random excitations of dura-

Figure 2: Simulation set-up (5 DOF system)

Based on 50 averages, 11 realisations of impulse-like signals
were derived and applied to the identification process. Simi-
larly for case (ii), each of the 100 response realisations is 16s
long.

RESULTS

Response Time History

Figure 3 shows a RDT derived response from case (i). A rapid
decay from the start of the signal for approximately 0.5s is
observed. The response remains within a constant amplitude
band after this, with no further indication of amplitude decay.
The signal within this band resembles a scaled version of the
system’s response to continuous excitation.
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Figure 3: RDT derived response (50 averages)

In figure 4, the first four seconds reflects the system’s response
to random excitation from the 4s burst random transient input.
A rapid decay characteristic similar to that in figure 3 is ob-
served after the 4th second. The amplitude reduces to almost
zero after 2s of decay.
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Figure 4: Response from BR4s transient excitation

Both response time histories are plotted on the same scale for
comparison. On inspection, the initial amplitude decay on both
signals are similar, which is not unexpected given they reflect
the same system. The main observed differences are the decay
to zero amplitude and the high amplitude response (initial 4s)
observed only in figure 4.

Identified Systems

Figures 5 and 6 are the direct MDC identification outcome
using responses to continuous excitation and RDT, and using
transient BR4s excitation, respectively. Both magnitude and
phase information are presented in the same figure.

In each figure, results from the original (HDirOrn) and the Tay-
lor series approximated

(
HDirTay

)
formulations are superposed

together with the actual FRF of the system (Href). The iden-
tified systems are intentionally displaced to facilitate compar-
ison. The absolute gain factor of the systems, relative to the
input, is irrelevant for response only identification processes.
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The following legend applies for both figures.(
HDirOrn , Href , HDirTay

)
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Figure 5: Identification from RDT derived responses
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Figure 6: Identification from BR4s induced transient responses

The quality of the identification is reflected by how closely the
shape of the identified magnitude and phase resembles those of
the actual FRF. The identified system using the RDT derived
responses does not resemble the actual FRF as closely as those
derived from the use of transient responses.

In figure 5, only
(
HDirTay

)
produced a magnitude with some

semblance to the actual FRF. The more stable solution outcome
of
(
HDirTay

)
relative to (HDirOrn) was similarly observed in

earlier work (Chia et al., 2007).

Figure 6 clearly shows that the MDC method works well with
transient excitations. The identified magnitudes are very sim-
ilar to the actual FRF. The identified phases show clear and
distinct transition at each pole and zero despite the "wavy"
appearance. The minimum phase system characteristic, where
phase decreases and increases by π at each pole and zero re-
spectively, is apparent.

DISCUSSION

Further work is required to improve the identification outcome
from distilling continuous signal using RDT and applying it to
the MDC identification method. In this first encounter, it seems
that amplitude decay to zero plays a key role in achieving qual-
ity identification outcome.

Considerations for refining the RDT process include the trigger
condition, percentage of overlap between signals and optimum
signal length to be used for identification process.

A higher constant level trigger condition, for example, would
lead to a set of stronger signals being extracted . The smaller
number of signals extracted, from a given continuous signal

length, will potentially benefit from a better signal-to-noise ra-
tio.

The percentage overlap between adjacent signals for the cur-
rent extracted 550 sets of 16s long signals from a 10 minute
data is >90%. For the same data length, only a maximum of
37 sets of non-overlapping 16s long signals can be extracted.
A balance between having excessive redundant information in
the former and sub-optimal use of information in the latter is
needed.

The chosen signal length of 16s used in the simulation is arbi-
trary. The system’s decay characteristics should have an influ-
ence on the optimum length to be used. From figures 3 and 4,
the suspicion is that very little useful information can be gained
beyond 2s of amplitude decay. A decreased signal length for
the RDT process in this case would likely benefit from greater
number of extracted signals with lower percentage overlap.

In the next step forward, changes to trigger conditions and sig-
nal length, and keeping the signal overlap in view will be ex-
plored. Applying a known exponential window to force ampli-
tude decay on response signals is also potentially beneficial.
The artificially decayed signal may lead to better identification
quality. The effects of the exponential window can be removed
in post-processing.

The key motivation for using RDT is the prospect of using the
MDC identification method on continuous signals. The ulti-
mate goal is to apply the the identification method on MIMO
systems under continuous excitation.
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