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ABSTRACT 

Sonar performance modelling is often based on loss budget afforded by the standard sonar equation, which inevitably 
involves various idealisations and assumptions. Field performance of practical sonar systems is often observed to be 
below the level predicted by the conventional sonar equation based on system technical specifications. The departure 
in performance of practical systems from idealised systems is attributed to various extra “loss factors”. These loss 
factors are usually combined and collectively described as “system losses”. Some of the loss factors are system-
related such as those associated with sound projection, reception and processing by the system. Others are caused by 
phenomena outside the system such as signal coherence degradation and time spreading due to reflections from tar-
gets and multi-path propagation. In this paper, we review and discuss theoretical and experimental work in assessing 
signal spatial de-correlation due to random environmental inhomogeneities and multipath propagation in both deep 
and shallow waters. Rough estimates of the resulting losses in array signal gain from conventional beamforming were 
given where possible. 

INTRODUCTION  

Sonar performance modelling is often based on loss budget 
afforded by the sonar equation, A decibel form of the active 
sonar equation can be written as (Cox 1989, Waite 2002), 

SE = SL–2TL+TS –[(N0+10log B –AG) ⊕ (RL1+10log T)] – 
(DT–PG) – SysLoss                      (1) 

Where the symbol ⊕ represents intensity summation, and  

SE = signal excess, 

SL = source power level, 

TL = one-way transmission loss, 

TS = target strength, 

N0 = noise power spectrum level, 

B = receiver bandwidth,  

AG = Array Gain, which is the coherent spatial processing 
gain of the beamformer against noise due to directivity of the 
receiver; 

RL1 = in-beam reverberation level over the full receiver 
bandwidth, normalized to 1 sec pulse, which includes rever-
beration reduction due to directivities of both the source and 
receiver beam patterns; 

T = pulse duration, 

DT = Detection Threshold - SNR required at the output of the 
temporal processor for certain probability of detection and 
false alarm;  

PG = Processing Gain of the temporal processor, 

SysLoss = system loss due to various idealised assumptions.   

. 

We note that (N0+10log B –AG) is the in-beam noise over the 
full receiver bandwidth; and (RL1+10log T) is the in-beam 
reverberation level over the full receiver bandwidth. 

Similarly for passive sonar, 

SE  =  SL– TL – (N0+10logB –AG) –  DT – SysLoss           (2) 

Application of the sonar equation involves various idealisa-
tions and assumptions. Field performance of practical sonar 
systems is often observed to be below the level predicted by 
the conventional sonar equation based on system technical 
specifications. The departure in performance of practical 
systems from idealised systems is attributed to various extra 
“loss factors”. These loss factors are usually combined and 
collectively described as “system losses”. Some of the loss 
factors are system-related such as those associated with 
sound projection, reception and processing by the system. 
Others are caused by phenomena outside the system such as 
signal coherence degradation and time spreading due to re-
flections from targets and multi-path propagation. Therefore 
the system loss (SysLoss) in Eq.(1) and (2) depends on the 
idealised assumptions made in evaluating other terms of the 
sonar equation.  

In this paper, we consider the losses in array gain due to envi-
ronment-induced signal spatial decorrelation, which may 
arise from (1) deterministic multipath interference or time 
spreading, and (2) random spatial and temporal fluctuations 
in the water mass and ocean boundaries. 

Wavefront curvature due to a source from a finite distance 
also increases the decorrelation of signals incident on a long 
array from broadside. This “near field” effect on array direc-
tivity has been discussed in Ziomek (1995). We do not con-
sider wavefront curvature effect in this paper - we assume 
that the receiver array is sufficiently far from the source such 
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that the Fraunhofer far-field condition as stated by 
Eq.(6.2.39) of Ziomek (1995) is satisfied.   

ARRAY SIGNAL GAIN OF PARTIALLY 
CORRELATED SIGNALS 

In decibel form, Array gain (AG) equals array signal gain 
(ASG) minus array noise gain (ANG) (Carey 1998). Spatial 
de-correlation of signal decreases array gain. Spatial correla-
tion of noise may decrease (for positive correlation of noise 
across the array) or increase (for negative correlation of noise 
across the array) array gain. In this paper, we only consider 
the effect of signal de-correlation on array sigal gain.   

In linear form, the array signal gain, , may be written as 
(Cox 1973, Carey 1998) 

sG

uRu sG 's =    (3) 

Where is the normalised signal cross-spectral matrix, 
which is a measure of the signal correlation across the array 
aperture. 

sR

For conventional beamforming, u is the steering vector of the 
array. For an unshaded line array of N elements steered 
broadside, the array signal gain becomes  
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where d is element spacing, and ρ is the normalized spatial 
correlation, which is defined by the cross correlation between 
two complex acoustic pressure field, , and )(xp )( xxp Δ+ , 

separated by a distance , normalized by the square root of 
the product of the autocorrelations of the individual signals. 
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Where p < > denotes ensemble average and * denotes com-
plex conjugate. 

Degradation of array gains has been studied when the spatial 
correlation function is assumed exponential (Cox 1973) and 
linear (Green 1976). Carey (1998) and Beran & McCoy 
(1987) used the following form for the correlation function,  

2,5.1,1],)/(exp[),( =Δ−=Δ nLxLx n
eeρ  (6) 

Where is the separation between the two points where the 
acoustic pressure is measured and Le is the correlation length 
where the correlation falls to 1/e.  The correlation function is 
exponential when n = 1 and Gaussian when n = 2. 

xΔ

For fully correlated signals, ρ = 1 and the theoretical signal 
gain is Gs(ρ = 1) = N2. When the signal is partly correlated 
among the array elements (ρ <1), the signal gain is less than 
N2 and is given by Eq.(4).  The loss of signal gain is, in dB, 
the ratio of signal gain to the gain when the signal is fully 
coherent, that is, 
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Figure 1 shows the loss in array signal gain versus the ratio of 
array length over correlation length for different correlation 

functions. It can be seen that the loss in signal gain is about 2 
dB when the array length is twice the correlation length. We 
also see that the loss in signal gain is not very sensitive to the 
exponent n. 
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Figure 1. Loss in array signal gain vs ratio of array length 
over correlation length for different correlation functions (La 
= length of array, Le = correlation length where the correla-
tion falls to 1/e.) 
 
As an example, Figure 2 shows the Array Gain in uncorre-
lated noise when the element spacing is half a wavelength 
and the correlation length is 50 wavelengths. It can be seen 
that increasing the array length beyond 2 correlation lengths 
is not worthwhile because doubling the array length to 4 cor-
relation lengthes leads to an additional array gain of about 1 
dB. 
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Figure 2. Array Gain in uncorrelated noise when the element 
spacing is half a wavelength and the correlation length is 50 
wavelengths. 

SIGNAL SPATIAL CORRELATION IN DEEP 
WATER 

Signal spatial correlation depends on stochastic and determi-
nistic spreads of the multipath energy arrival angles at the 
receivers (Jobst and Zabalgogeazcoa 1979). It also depends 
on the orientation of the array relative to the sound propaga-
tion direction. We discuss signal spatial correlations in the 
transverse, radial and vertical directions. 

Transverse Horizontal Correlation 

Besides wavefront curvature, de-correlation in the transverse 
direction is mainly due to stochastic scattering from random 
spatial inhomogeneities in water and ocean boundaries rather 
than deterministic interferences from multipaths. In deep 
water, theoretical modelling of single path propagation in an 
ocean with horizontal temperature fluctuations leads to the 
following transverse correlation function of the acoustic pres-
sure field (Carey and Mosley 1991), 
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])/(exp[)( 2/3
TTT Ldd −=ρ   (8) 

where dT is the transverse separation between two receivers 
and LT is the transverse horizontal correlation length, 

3/53/2)( −−= frEL fT
  (9) 

where r is the propagation range in meters, f  is acoustic fre-
quency in Hz. The temperature fluctuation coefficient Ef  
ranges from 3.4×10-17 to 13.1×10-17 with a mean of 4.8×10-17 
(Carey 1998). 

To obtain rough estimates of losses due to signal transverse 
de-correlation, we may compute the correlation length using 
Eq.(9) and estimate the losses from the n = 1.5 curve in Fig.1. 
Figure 3 shows the signal transverse correlation lengths in 
units of wavelength computed using Eq.(9) with the Ef  coef-
ficient in Table III of Carey (1998) for Pacific deep waters. 
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Figure 3. Signal transverse horizontal correlation lengths in 
deep Pacific water for different propagation ranges. 

Radial Horizontal Correlation 

As a typical approximation of the deep water environment, 
Smith (1976) considered a bi-linear sound speed channel in 
which the sound speed increases linearly with vertical dis-
tance on either side of an “axis” where the speed is a mini-
mum: 
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Where the gradients  and  are positive constants. It is 
further assumed that all energy propgates within the angular 
boundaries of a limiting ray, which is the ray that vertexes at 
the channel edge. Energy transmitted by rays more steeply 
inclined than the limiting ray is ignored. 

+a −a

The angular energy spectra, hence the correlation functions, 
depend on the receivers depths. Smith (1976) gave analytical 
approximations for the signal radial correlations for some 
limiting cases.  

When the source is near the sound channel axis, and the re-
ceiver near the channel’s edge, the normlaized correlation is 
given as, 
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Where dr is the radial separation between two receivers, k = 
2π/λ is the acoustic wavenumber, λ is the acoustic wave-

length, C(u) and S(u) are the standard Fresnel integrals, Lθ is 
the grazing angle of the limiting ray at the receiver. 

When both the source and the receiver are near the sound 
channel axis, the normlaized correlation is given as, 
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Whereφ is the grazing angle of the ray vertexing at the re-
ceiver when it crosses the axis. 

Figure 3 of Smith (1976) shows the magnitude of the normal-
ized radial horizontal correlations for a source near the axis 
and receivers at various distances from the axis. 

Smith and Stern (1977, 1978) extended the study to a deep 
water sound speed profile with a sound speed minimum that 
is similar to a SOFAR channel. The source is near (less than 
a wavelength from) the surface and the receiver near the 
channel axis. The water is assumed deep enough to sustain 
convergence zone propagation, i.e., the sound speed at the 
bottom is much greater than that at the surface.  Smith and 
Stern (1977, 1978) found that the squared magnitude of the 
normalized spatial correlation in the radial direction can be 
well-fitted by a Gaussian function. Their results can be sum-
marized as,  

])/(exp[)( 2
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Where the radial correlatioin length Lr can be written as, 
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Where are the sound speeds at the bottom and surface 
respectively. 

sb cc ,

Galkin et al (2006) analysed experimental measurements in 
the Mediterranean Sea for explosive sources at the axis of an 
approximately bi-linear channel. Correlations with different 
averaging times were computed to show the effect of includ-
ing different multipath arrivals. In the frequency band 240–
340 Hz, the correlation between receivers 300 m apart is 
0.85-0.95 when only a narrow ray bundle (grazing angles 2-
3o) is included. The correlations are less than 0.2 when taking 
into account all multi-paths including surface and bottom 
reflected arrivals with much greater angular spread.  

Our calculations, not included here, show that Galkin’s 
measurements are consistent with Smith’s (1976) analytical 
expressions. 

Vertical Correlation 

Smith’s general analytical formulation [e.g., Eqs.(11-12) of 
Smith 1976] may be used to estimate the signal vertical cor-
relations in multi-path, bi-linear sound speed channels 
bounded by limiting rays  For vertical arrays with omnidirec-
tional hydrophones, the vertical angular structure of the mul-
tipath propagation is the major contributor to signal vertical 
de-correlation. 

Directional receivers that select multipath arrivals in a nar-
rower angular interval greatly enhance vertical correlation 
length (Galkin and Pankova 2002). Experimental data in the 
convergence zones of the deep Atlantic Ocean for pseu-
donoise signals in 0.8–1.3 kHz show large correlation coeffi-
cients (>0.7–0.8) for directional receptions separated by 250 
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meters in depth (Galkin and Pankova 2003). Further analysis 
shows that the vertical correlation length can reach hundreds 
or even thousands of sound wavelengths (Galkin and Pank-
ova 2005). 

We point out that whilst the use of arrays with directional 
receiving elements may enhance signal correlation, this will 
introduce another form of system loss – an “energy splitting 
loss” associated with the transmission loss term in the sonar 
equation because some signal energy outside the selected 
angular range is excluded from contributing to signal level. 

SIGNAL SPATIAL CORRELATION IN 
SHALLOW WATER 

In shallow water, signal correlation is the result of two com-
peting mechanisms: random volume and boundary scattering 
and high-angle energy stripping due to lossy boundaries. The 
former decreases signal correlation with range whereas the 
later generally increases signal correlation with range. In 
general, signal correlation is low at near field because the 
higher order modes scatter from the water mass and rough 
boundaries. Then correlation may increase as higher-angle 
energies are being stripped away by the lossy boundaries, 
reducing the angular spread of the signal. In the far field, 
correlation decreases with range again as the remaining low-
order modes scatter from water-mass fluctuations (Zhu and 
Guan 1992). In downward refracting propagation, the range 
dependence is complicated. The correlation is greatest if both 
the source and receiver are below the thermocline because 
the field is then dominated by the lower order modes. 

Transverse Horizontal Correlation 

Wille and Thiele (1971) measured the transverse horizontal 
coherence in shallow (65 m) water using explosive signals. 
The environment was isothermal mixed layer (upward re-
fracting). The sea surface was rough with characteristic 
wave-height much greater than the roughness of the sea bot-
tom. The absence of the temperature gradient meant minimal 
internal wave activity and that signal decorrelation was 
mainly due to reflections from the rough sea surfaces. Wille 
and Thiele (1971) used a Gaussian distributed angular power 
directivity to yield a Gaussian spatial correlation function  

[ ]2/)/2(exp)( 2λσπρ θTT dd −=          (15) 

where dT is the transverse separation between two receivers, 
λ is the acoustic wavelength, θσ  is the standard deviation 
(angular spread). The correlation length LT where the correla-
tion falls to 1/e is given by 

)2/( θσπλ=TL           (16) 

Carey et al (2002) measured array signal gain at three shal-
low water sites with variable downward refracting conditions. 
The loss in signal gain was used to estimate that between 300 
-400 Hz, the horizontal coherence lengths are about 30 wave-
lengths to ranges of 40 km. 

Measurements in 200-300 meters of coastal water of the Bar-
ents Sea show that for frequencies below 300 Hz, the trans-
verse correlation length was greater than 2 km and only 
weakly depends on the range up to 110 km to the sound 
source. For frequencies 350 to 500 Hz, it gradually decreases 
with increasing range, which has been attributed to the effect 
of short-period internal waves (Galkin, Popov & Simakina 
2004). Galkin et al (2004)’s correlation lengths are much 
greater than those in Wille and Thiele (1971), possibility 

because both the source and receiver depths are near the 
channel axis of the sound speed profile. 

Figure 4 shows experimental results in shallow water with 
isothermal (Wille & Thiele, 1971) and downward refracting 
profiles (Carey etal 2002). The solid curve is a simple fit to 
the data of Wille & Thiele (1971). 
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Figure 4. Signal transverse horizontal correlation lengths in 
shallow water with isothermal (Wille & Thiele 1971) (circle) 
and downward refracting (Carey 1998, Carey etal 2002) 
(cross) profiles. 

In the absence of sufficient data, the following process may 
be used to obtain a rough estimate of the loss due to signal 
transverse horizontal de-correlation: 

• In shallow water with mixed layer profile, estimate the 
correlation length using the blue curve in Fig.4 and es-
timate the loss from the n = 2 curve in Fig.1. This 
probably provides an upper bound to the loss because 
the blue curve is based on Wille & Thiele (1971)’s data 
obtained under heavy sea state 4. 

• In shallow water with downward refraction profile, es-
timate the correlation length using Carey’s data (Carey 
1998, Carey etal 2002) in Fig.4, interpolate based on 
(frequency)-1 variation if necessary and estimate the loss 
from the n = 2 curve in Fig.1. 

Radial Horizontal Correlation 

General analytical expressions for signal radial correlations 
were derived based on angular energy spectra (Smith 1976) 
and normal mode considerations (Wang & Zhang 1992). 

Smith (1976) gave the following expression for the radial 
horizontal correlation in an isospeed shallow water channel,  
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Where k = 2π/λ is the acoustic wavenumber,θ is the charac-
teristic angular spread, H is the water depth, r is the horizon-
tal range, and b is a measure of boundary absorptivity (The 
intensity of a ray striking the boundaries at a grazing angle θ 
is attenuated by a factor exp(-bθ) after one bounce from each 
of the two boundaries, i.e., one ray cycle distance.)  

We can see that the radial correlation increases with range 
and the rate of boundary absorption as lossy boundaries strip 
away high-grazing angle multipath energies. It also decreases 
with water depths because greater water depths accommodate 
greater spread of propagation angles. 
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Jones et al gave slightly different expressions for isospeed 
channels also based on angular energy spectra arguments 
(Jones, Duncan, & Maggi 2007). 

Vertical Correlation 

Analytical expressions for signal vertical correlations were 
given based on angular energy spectra and normal mode 
considerations (Smith 1976, Wang & Zhang 1992). The ex-
pressions lead to Gaussian correlation functions for isospeed 
shallow water channels. 

Smith (1976) gave the following expression for the vertical 
correlation in an isospeed shallow water channel,  
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Where dv is the vertical separation between two receivers. 
The vertical correlation length, where the correlation falls to 
1/e, is then, 

2/1)]2/()[/( HbrLv πλ=   (19) 

We can see that the vertical correlation lengths increase with 
the square root of range and the rate of boundary absorption 
as lossy boundaries strip away high-grazing angle multipath 
energies. They decrease with water depths because greater 
water depths accommodate greater spread of propagation 
angles. 

Also based on angular energy spectra arguments, Jones, Dun-
can, & Maggi (2007) gave slightly different expressions for 
the vertical correlation length in isospeed channels. 

Measurements in 200-300 meters of coastal water in the Bar-
ents Sea with source and receiver depths near the sound 
speed minimum show that vertical correlations increase with 
range up to 200 km in the frequency band 240 to 340 Hz. 

At lower frequencies, vertical signal correlation was meas-
ured by transmitting CW pulses of 107 Hz and 240 Hz from a 
source near the bottom to a vertical line array 13.82 km away 
in a downward refracting shallow water environment (Sazon-
tov, Matveyev & Vdovicheva 2002). The data in Table I & 
Fig.12 of Sazontov, Matveyev & Vdovicheva (2002) seem to 
show that (1) the correlation lengths are much greater than 
two wavelengths; and (2) decorrelation increases more than 
linearly with frequency. 

Yang (2007) measured vertical signal correlation by transmit-
ting 0.1s duration LFM pulses of 400 Hz bandwidth centred 
around 1200 Hz and correlating the arrivals received on a 
vertical line array. The environment was coastal waters of 
100 m depth with a downward refracting (summer) profile. 
The source was 4 m above the bottom and 33 receivers, sepa-
rated by 0.5 m (which is 0.4 wavelength at 1200 Hz), were 
between 50 – 66 m. The source to receiver range was about 
10 km. It was found that the measured vertical correlation 
among the adjacent 8 receivers can be fitted with a Gaussian 
function, 

])/(exp[)( 2
vvv Ldd −=ρ   (20) 

where dv is the vertical separation of the receivers, and the 
vertical correlation length Lv is about 2 wavelengths. (In 
passing, we note that based on Eq.(18), a vertical correlation 
length LV of 2 wavelengths corresponds to an angular spread 
of 13 degrees, which matches well with the angular spread 
shown in Fig.3b of Yang (2007). 

As shown in Fig.5 of Yang (2007), the Gaussian function in 
Eq.(20) under-estimates the signal correlation beyond the 
adjacent 8 receivers, leading to under-estimation of the signal 
gain  shown by the solid line in Fig.6a of Yang (2007). 

We use the following modified Gaussian correlation function 
to account for the residual correlations beyond the nearby 8 
receivers; 
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Figure 5. Signal gain versus the number of array elements 
for a vertical line array: signals with full correlation (dashed 
curve), Gaussian correlation (dotted curve), modified Gaus-
sian correlation (red curve). 

Figure 5 shows computed signal gain as a function of the 
number array elements and can be directly compared with 
Fig.6a of Yang (2007). The dashed curve is for fully corre-
lated signals; the dotted curve is for signals with the Gaussian 
correlation in Eq.(20), and the solid curve is for signals with 
the modified Gaussian correlation in Eq.(21). The dashed and 
dotted curves show the same results as the two corresponding 
curves in Fig.6a of Yang (2007). The solid curve, computed 
using the modified Gaussian correlation in Eq.(21), fits well 
the measured signal gain data in Fig.6a of Yang. 
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Figure 6. Loss in signal gain vs ratio of array length over 
correlation length for a vertical line array: Gaussian correla-
tion (dotted curve); modified Gaussian correlation (blue 
curve); and a simple fit 2log(1+5La/Lv) (red curve). 

Figure 6 shows the corresponding loss in signal gain as a 
function of the ratio of array length La over signal vertical 
correlation length Lv. The red solid curve is a simple fit to the 
results using the modified Gaussian correlation in Eq.(21). 
The result may be used to quickly assess array signal gain 
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degradation in situations where the signal correlation length 
are approximately known or can be estimated. 

Besides Yang’s (2007) work, there is little other experimental 
data to indicate if the Gaussian form or the modified Gaus-
sian form is a closer approximation to signal vertical correla-
tion in shallow water, although the data at low frequencies in 
Sazontov, Matveyev & Vdovicheva (2002) support the as-
sumption that correlation does maintain a certain value after 
the initial drop with sensor separation distance.  The blue 
curve or the simple fit 2log(1+5La/Lv) in Fig.6 may be used 
as a reasonable estimate of signal gain loss in shallow down-
ward refracting environments for vertical line arrays. For two 
or three dimensional arrays, the estimate constitutes the loss 
component in array gain degradation due to signal vertical 
decorrelation, which can be combined with the loss compo-
nents due to signal decorrelation in other dimensions. 

SUMMARY 

We reviewed and discussed theoretical and experimental 
work in assessing signal spatial de-correlation due to stochas-
tic inhomogeneity and multipath propagation in both deep 
and shallow water environments. Rough estimates of the 
resulting losses in array signal gain from  conventional beam-
forming were given where possible.  
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