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ABSTRACT 

A thin rectangular acoustically small plate vibrating in its own plane in a viscous fluid is considered. The sound radi-
ated by such vibrations is evaluated by using both non-uniform Kirchhoff and Ffowcs Williams and Hawkings equa-
tions. Both non-uniform Kirchhoff and Ffowcs Williams and Hawkings equations include the sound generated by 
Lighthill’s quadrupole sources which are described by a volume integral over the regions in the fluid containing vor-
ticity. For the purpose of evaluating the volume integral, the fluid is separated into three regions: the viscous bound-
ary layer where the fluid motion is predominantly rotational, most of the fluid where its motion is potential, and a 
narrow transitional region. It is shown that the boundary layer does not generate any sound, whereas the transitional 
area generates the sound with dipole directivity. As Kirchhoff’s integrals over the surface of the plate vanish, it is 
concluded that all generated sound can be attributed to the Lighthill’s volume sources. Ffowcs Williams and Hawk-
ings equation describes, apart from Lighthill’s sources, the dipole sound generated by tangential forces acting on the 
surface of the plate. It is demonstrated that, for the plate considered, the amplitude of this sound is significant, and, 
therefore, the two methods produce significantly different predictions for the radiated sound. The obtained predic-
tions for the radiated sound are discussed and experimental measurements to verify the obtained results are proposed. 
Also, recommendations for the practical use of both methods are suggested. 

INTRODUCTION 

The prediction of sound generated by a fluid flow became an 
important topic of research with the development and wide-
spread use of jet aircraft in 1950s. The first significant con-
tribution to this topic was made by Sir James Lighthill 
(1952). He showed that the sound radiated by a turbulent 
flow without boundaries was controlled by the wave equation 
with the source term determined by the “Lighthill’s stress 
tensor”, which represents all non-acoustic stresses in the 
fluid. Lighthill also showed that the source term corresponds 
to quadrupole sound. Lighthill’s theory is often called the 
“acoustic analogy”. 

Curle (1955) extended Lighthill’s theory to a flow with solid 
boundaries. Curle stated that, for an immoveable boundary, 
the radiated sound consisted of Lighthill’s quadrupole sound 
as well as the dipole sound originating at the rigid boundary. 
The amplitude of the dipole sound was determined by the 
total force acting upon the fluid from the boundary including 
viscous tangential force. 

Ffowcs Williams and Hawkings (1969) extended the theory 
of the “acoustic analogy” to a flow with moving boundaries. 
They showed that the motion of the boundaries led to the 
appearance of a third term in the equation for the radiated 
sound amplitude. This term is determined by the normal ve-
locity of the boundary with respect to a stationary observer 
and, therefore, describes the monopole sound. For a station-
ary boundary, the FW-H equation is reduced to Curle’s equa-
tion. 

Since its derivation, the Ffowcs Williams and Hawkings 
equation has become the foundation for one of the most fre-
quently used methods of prediction of sound radiated by fluid 
flow near rigid surfaces. A brief list of applications where the 
FW-H equation is utilised includes rotating helicopter blades, 
rotating fans, and flow near an airfoil. This equation is also 
used in the prediction of noise radiated by moving ships and 
ship propellers. It is also the foundation of a helicopter noise 
prediction code, which is employed extensively by the heli-
copter industry. (See Zinoviev (2007) for a list of references). 

Despite being widely used, the FW-H equation appears to 
lack conclusive experimental verification. Bies and Zinoviev 
(2007) discussed two early experiments by Clark and Ribner 
(1969) and by Heller and Widnall (1969), which showed 
discrepancy with the predictions of the FW-H theory of up to 
5 dB. Bies (1992) investigated the noise produced by a circu-
lar saw and reported that the measured noise was 2.5 dB  
lower than predicted.  

In view of these discrepancies, Zinoviev and Bies (2004) 
have conducted a critical analysis of the historically first 
paper on sound generation by a flow near boundaries (Curle 
1955). The authors have shown that Curle’s derivation con-
tains erroneous evaluation of a volume integral. They also 
showed that, if the integral is evaluated correctly, Curle’s 
derivation leads not to Curle’s equation, which is the same as 
the FW-H equation for a stationary boundary, but to a differ-
ent equation, which includes Lighthill’s quadrupole sources 
as well as surface distributions of dipole and monopole 
sources as described by Kirchhoff integrals (Stratton 1941). 
The obtained equation differs from the FW-H equation by the 
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appearance of the terms describing the sources at rigid 
boundaries. This difference will be discussed below in this 
paper.  

More recent experiments (Eschricht et al 2007, Greschner et 
al 2007) still continue to show a discrepancy of a few deci-
bels between the predictions of FW-H theory and experimen-
tal data. 

An attempt to verify Curle’s theory has been recently made 
by Leclercq and Doolan (2009). These authors conducted a 
detailed analysis of sound radiation by two rigid blocks in 
turbulent air flow in an anechoic wind tunnel. The analysis 
involves numerical simulations of the flow around the blocks 
as well as experimental measurements the radiated sound 
amplitude together with the force acting upon the down-
stream block. While the authors show that their experimental 
results and theoretical predictions based on Curle’s theory are 
within 1 dB of each other, there are some uncertainties in 
their method that can be pointed out. 

Firstly, in their experimental setup, the sound is radiated by 
both blocks, whereas they measure directly only the force 
acting upon the downstream block. The force acting upon the 
upstream block is also required to evaluate the radiated 
sound, and the authors make an estimate of it based on their 
numerical results. At the same time, the authors show that 
their numerical prediction for the force acting upon the 
downstream block is about 20 dB lower than the experimen-
tal measurements. The authors attributed this difference to 
their use of 2-dimensional formulation in their numerical 
simulation of the flow. It is clear that direct measurements of 
the force on the upstream block or using a better method of 
numerical flow simulation would add significantly to the 
reliability of the experimental results. 

Secondly, it is not clear from the paper (Leclercq and Doolan 
2009) whether the authors included viscous forces in their 
numerical estimates of the total force acting upon the blocks. 
As shown below in this paper, the force in Curle’s formula-
tion includes also the viscous component. 

Overall, the analysis by Leclercq and Doolan (2009) can 
definitely provide the solid foundation for further research. 
At the same time, their current claim that their results “give 
increased confidence in the use of Curle’s theory” appears to 
be somewhat premature. 

Apart from conducting complex experiments, the two meth-
ods can be compared by applying them to a simple case 
where the solution can be found easily. Zinoviev (2007) ap-
plied the FW-H equation to three examples: a stationary ob-
ject in a variable velocity field; a solid object embedded in a 
turbulent flow; and a thin plate vibrating in its own plane in a 
viscous fluid. As further investigation of the vibrating plate 
showed that it demonstrated more complex behaviour than 
the one suggested in Zinoviev (2007), it has become neces-
sary to consider this case in more detail. 

This paper contains an investigation of sound generation by 
the thin plate vibrating in its own plane in a viscous fluid. 
First, the difference in the FW-H and non-uniform Kirchhoff 
equations are demonstrated. Second, the sound amplitude is 
calculated by the non-uniform Kirchhoff and FW-H equa-
tions. Third, it is shown that the two methods predict signifi-
cantly different results for the sound amplitude. Fourth, a 
method for experimental verification of the obtained results is 
suggested. 

NON-UNIFORM KIRCHHOFF AND FW-H 
EQUATIONS 

Non-uniform Kirchhoff equation 

Using the fundamental laws of mass and momentum conser-
vation for the motion of a fluid, Lighthill (1952) showed that 
sound generation and propagation in a turbulent fluid flow 
without boundaries was determined by the following wave 
equation with respect to the fluid density, ρ : 
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In Eq. (1), c0 is the sound speed and Tij is Lightill’s stress 
tensor given by: 
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where u is the fluid velocity vector, 
ijδ  is Kronecker’s delta, 
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ijp  is the compressive stress tensor determined as fol-

lows: 
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where p is the pressure and µ  is the viscosity of the fluid.  

Note that Eq. (2) contains a non-linear term proportional to 
i ju u . In this article, the fluid velocity is considered to be 

much smaller than the speed of sound and, therefore, all such 
terms are neglected in further analysis. 

Eq. (1) is a non-uniform wave equation with respect to the 
density, ρ . If the harmonic temporal dependence, ie tω− ,  is 
assumed, Eq. (1) is reduced to Helmholtz equation, which 
general solution is well-known (Korn 1971, Eq. 15.6-59).   
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In Eq. (4), 0ρ is the value at equilibrium, r = −x y , 

( )321 ,, xxx=x  is the radius-vector of the observation point, 

( )321 ,, yyy=y  is the radius-vector of the source point, S is 
any closed surface in the fluid, V is the volume of the fluid 
outside S where 0ijT ≠ , and n is the normal vector to S di-

rected outside V.  This direction of the normal is assumed 
throughout this paper. 

The above Eq. (4) is the most general form of the non-
uniform  Kirchhoff formulation considered in this paper. As 
this equation is a general solution of Lighthill’s non-uniform  
wave equation (Eq. (1)), which is derived without any sig-
nificant assumptions about the fluid flow, this equation is 
also valid for a wide variety of flow types including viscous 
and non-linear flows. 

It has to be noted that Eq. (4) differs from Kirchhoff equation 
known from literature (Brentner & Farassat 1997). Whereas 
the traditional Kirchhoff equation implies that all Lighthill’s 
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acoustic sources are within the closed surface S, Eq. (4) al-
lows Lighthill’s sources to be outside this surface. Their con-
tribution to the radiated sound wave is determined by the 
volume integral in Eq. (4), which is not present in the tradi-
tional Kirchhoff equation. To distinguish between Eq. (4) and 
the traditional Kirchhoff equation, the author has named the 
former “non-uniform Kirchhoff equation”. 

For flows with low Mach number, where non-linear terms 
can be neglected, the pressure and density fluctuations are 
linked by the following simple equation: 

2
0' ' .p cρ=  (5) 

In this case, the non-uniform Kirchhoff equation (Eq. (4)) can 
be re-written in terms of pressure fluctuations, 'p : 
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If the region of the acoustic sources is acoustically small, it 
can be shown from the Navier-Stokes equation that 
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where pu  is the potential component of the velocity. Taking 
into account Eq. (7), non-uniform Kirchhoff equation (6) can 
be rewritten as follows: 
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The volume integral in Eq. (8) represents Lighthill’s quadru-
pole sound, whereas the surface integrals represent the field 
of all acoustic sources located inside S as the field of a layer 
of acoustic sources on S. The second term on the right is the 
field of a layer of monopole sources with the strength, 

0
p
nu tρ ∂ ∂ , and the third term on the right is the field of a 

layer of dipole sources with the strength, p’. 

Note that no assumptions about viscosity of the fluid have 
been made in the derivation of Eq. (8). Therefore, it is valid 
also for flows where the fluid viscosity cannot be neglected. 

Ffowcs Williams and Hawkings equation 

Based on the same fundamental conservation laws as 
Lighthill’s theory, but using a different mathematical ap-
proach, Ffowcs Williams and Hawkings (1969) derived an 
equation determining the sound radiated by a fluid flow near 
moving solid boundaries. If the surface S corresponds to an 
impenetrable solid boundary, the FW-H equation in its dif-
ferential form can be formulated as follows (Brentner and 
Farassat 1997): 
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where ( )Sδ  is the Dirac delta function which is zero every-

where except on S, and vn is the normal component of the 
velocity of the boundary. 

For small Mach numbers, M = u/c0 << 1,  the solution of Eq. 
(9) is provided by Ffowcs Williams and Hawkings (1969), 
Eq. (5.1). For the harmonic temporal dependence, i te ω− , this 
solution can be written as follows: 
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With a transformation of the last term on the right, Eq. (10) 
takes the following form: 
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where 
i ij jP p n=  is the i-th component of the force acting 

upon the boundary from the fluid. 

Note that the differentiation in the volume integral in Eq. (11) 
is done under the integral sign, as the possibility to exchange 
the order of integration and differentiation in such equations 
is stated by both Lighthill (1952) and Ffowcs Williams and 
Hawkings (1969).  

Comparison of the two equations 

While the non-uniform Kirchhoff equation (8) and the FW-H 
equation (11) are derived based on the same conservation 
laws, these two equations are different in two important as-
pects.  

First, the monopole term (the second term on the right) in Eq. 
(8) contains the potential component of the fluid velocity on 
the boundary, whereas the monopole term in Eq. (11) con-
tains the total fluid velocity that may include also the rota-
tional component of the velocity, which is related to vortic-
ity. However, any investigation of the effect of this difference 
on prediction of the radiated sound is outside the scope of 
this work. 

Second, the dipole term (the third term on the right) in Eq. (8) 
contains only pressure, whereas the dipole term in Eq. (11) 
contains the total force on the boundary including the viscous 
component of the force. The analysis below demonstrates on 
an example how the difference in the dipole terms of the two 
equations leads to considerably different predictions of radi-
ated sound amplitude. 
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At the same time, it is clear that, for an inviscid fluid flow 
without vorticity, both equations produce the same result for 
the generated sound pressure.  

STATEMENT OF THE PROBLEM 

Spatial configuration of the plate and its vibrations 

Consider a rigid infinitely thin rectangular plate of sizes, 
a b×  in y1- and y2-directions respectively, vibrating in its 
own plane along the y1-axis with the temporal velocity de-
pendence, i

0
tU U e ω−= , in a viscous fluid with viscosity, µ 

(Figure 1). 

 

The goal is to calculate the complex amplitude and spatial 
configuration of the sound radiated by such vibrations by the 
two methods.  

Existing literature on the subject 

The existing literature on the influence of the fluid viscosity 
on sound radiation by vibrating objects of simple shapes is 
not abundant. An extensive literature search did not reveal 
any publications where the problem under consideration 
(sound radiation by a thin plate) was considered and solved. 
At the same time, there are a few publications where similar 
problems were considered. 

For example, Ingard and Praidmore-Brown (1955) calculated 
the sound radiated by a tangentially vibrating plate due to 
Lighthill’s quadrupole sources (first term on the right in Eqs. 
(8) and (11)). However, this paper is difficult to utilise as it is 
very short and many intermediate steps and results are miss-
ing. The authors calculated that the sound amplitude is pro-
portional to 1/x2  and, therefore, is not significant in far field. 
Also, they did not consider the influence of the plate edges on 
the radiated sound. 

Blinova and Kozhin (1970) calculated the sound radiated by 
an oscillating cylinder in a viscous medium. They found that, 
if the cylinder radius is much smaller than the acoustic wave-
length, the fluid viscosity leads to an increase in sound radia-
tion corresponding to an increase in cylinder radius by 2δ, 
where δ is the thickness of the viscous boundary layer. 

Assumptions 

The following assumptions are made in this paper. These 
assumptions, while significantly simplifying the necessary 
mathematical calculations, do not distort the physical nature 
of the problem. 

a) The plate and the region in the fluid containing acoustic 
sources are considered to be acoustically small: 

1, 1, 1ka kb ky<< << << . (12) 

b) The acoustic field is to be found far from the plate:  

1.kr >>  (13) 

c) The boundary layer thickness, δ, is much smaller than the 
size of the plate: 

, .a bδ δ<< <<  (14) 

d) The amplitude of the plate displacement is much smaller 
than the boundary layer thickness: 

0 .U ω δ<<  (15) 

e) The influence on the sound radiation of the side edges of 
the plate is neglected. 

d) The fluid velocity is much smaller than the sound speed, 
c0: 

0 ,u c<<  (16) 

 so that all non-linear terms containing uiuj are neglected. 

Fluid motion near the plate 

Due to Eqs. (14) and (15), the fluid can be split into three 
distinct regions (Figure 2).  

 

First, the fluid motion directly above and below the plate can 
be assumed to be exactly the same as if the plate were infi-
nite. Note that this assumptions is possible only because there 
is no fluid flow on average. Equations of the fluid motion for 
an infinite plate have been solved analytically (Stokes 1851, 
Landau & Lifshitz 1959). The solution  shows the existence 
of quickly decaying transversal waves propagating normally 
to the plate. The fluid velocity has only one non-zero compo-
nent. This component is parallel to the plate and determined 
as follows: 

( )3 i 1

1 0 e ,
y

u U δ
−

=  (17) 

where the boundary layer thickness, δ, is 

0

2 .µδ
ρ ω

=  (18) 

It can be clearly seen that the viscous wave amplitude decays 
by the factor of e ≈ 2.718 over δ and by the factor of 
e2π ≈ 540 over the spatial period of the wave.  

It is known that the viscous fluid flow near oscillating objects 
becomes potential (free of vortices) at distances of the order 
of the boundary layer thickness, δ (Landau & Lifshitz 1959, 
Blinova & Kozhin 1970). Therefore, the fluid outside of the 
boundary layer can be separated into the fluid volume with 
potential motion and a narrow transitional region with the 
width, ε ~ δ. Contrary to the boundary layer, the fluid veloc-
ity in these regions is not known. 

Figure 2. Three regions in the fluid. 1 – the boundary 
layer; 2 – the transitional region; 3 – the rest of the fluid. 
The figure is stretched in the vertical direction for better 

clarity. 
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In a strict mathematical sense, both the boundary layer and 
the transitional region are infinite in the vertical direction, as 
Eq. (17) is determined for 3y−∞ < < ∞ . Nevertheless, since 

the vorticity quickly decreases with increasing 
3y , the verti-

cal thickness of these two regions can still be considered 
small. 

APPLICATION OF KIRCCHOFF EQUATION TO 
THE PLATE VIBRATIONS 

Sound radiation due to the monopole and dipole 
sources on the plate surface 

First consider the sound radiated by the monopole and dipole 
sources on the surface of the plate. These sources are de-
scribed by the second and third terms in the right-hand part of 
Eq. (8) respectively. 

Eq. (8) shows that the monopole term is determined by the 
normal component of the potential fluid velocity, which is 
proportional to the normal derivative of pressure (Eq. (7)). 
Landau & Lifshitz (1959) stated that, in the boundary layer 
near a tangentially vibrating rigid surface, the pressure is 
constant. Therefore, the monopole term in Eq. (8) vanishes. 

The dipole term in Eq. (8) is determined by the pressure on 
the surface. This pressure represents the normal component 
of the force acting upon the plate. As the fluid flow is sym-
metric with respect to the (x1,x2) axis, the total normal com-
ponent of the force is zero, and the dipole term also vanishes. 
This conclusion can be confirmed by direct calculations of 
the integral in the third term on the right in (8). These calcu-
lations are omitted in this paper. 

Sound radiation due to Lighthill’s sources in the 
boundary layer 

The sound radiated by Lighthill’s quadrupole sources in the 
boundary layer is described by the first term on the right in 
Eq. (8). The calculations require the knowledge of Lighthill’s 
stress tensor, Tij. As the plate is considered to be acoustically 
small (Eq. (12)), the fluid can be considered incompressible 
in the vicinity of the plate, and, as a result, Tij can be written 
as follows (Lighthill 1952, Granger 1995): 
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In the boundary layer, only one velocity component tangen-
tial to the plate is not zero (Landau & Lifshitz 1959): 
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It follows from Eqs (19) and (20) that components of Tij are 
determined as 
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It is clear from Eq. (21) that the double derivative 
2

ij i jT y y∂ ∂ ∂  is equal to zero for any i,j. Therefore, 

Lighthill’s quadrupole sources within the boundary layer do 
not radiate any sound.  

Sound radiation due to Lighthill’s sources in the 
transitional region 

The task of calculating the sound radiated by sources in the 
transitional region is not straightforward, as the spatial veloc-
ity distribution in this region is unknown. The exact calcula-
tion of this sound may require utilising computational fluid 
dynamics (CFD) in order to find the unknown velocity. How-
ever, the assumptions made in this paper allow completing 
the calculations without the exact knowledge of the velocity 
distribution. 

It is shown above that no sound is generated on the surface of 
the plate and in the boundary layer. Therefore, all sound gen-
erated by the plate motion is originated in the transitional 
region. This sound can be found by Kirchhoff integrals over a 
closed surface which encloses the transitional region. For 
example, such a surface can be the boundary between the 
region and the rest of the fluid where the motion is potential 
(the boundary between the regions 2 and 3 in Figure 2). If 
this boundary, which is external to the transitional region, is 
denoted Sext, the sound generated by the plate motion can be 
determined as follows: 
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The following important argument can be made about Eq. 
(22) and the radiated sound which it describes. As the plate is 
acoustically small (Eq. (12)), the radiated sound does not 
depend on fine details of spatial distributions of the velocity 
and pressure on the boundary Sext. Instead, the sound is de-
termined by the total volume velocity and the total force at 
the boundary.  In addition, since the transitional region is 
thin, it can be assumed that the total volume velocity and the 
total force on both sides of the region are equal and, there-
fore, Eq. (22) can be rewritten for the boundary, Sint, between 
the boundary layer and the transitional region (Figure 2): 
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The integrals in Eq. (23) can be easily calculated, as the dis-
tributions of velocity and the pressure on the boundary Sint 
are known. These distributions coincide with the distributions 
in the boundary layer, since the pressure and the velocity are 
continuous on Sint. 

The monopole sources are described by the first integral on 
the right in Eq. (23). Taking into account Eq. (7), the mono-
pole component of the acoustic pressure can be re-written as 
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The boundary Sint consists of two strips at both edges of the 
plate. The strips lie in the plane ( )2 3,y y  and have the width, 

b, in the y2-direction. As stated above, even though the strips 
are infinite in y3-direction, this does not affect the validity of 
the assumptions that the boundary layer is thin and the region 
containing sound sources is acoustically small, as the vortic-
ity decays quickly with increasing y3 (Eqs. (17), (18)). If 
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these considerations are taken into account, Eq. (24) takes the 
form of 

( )

( ) ( )
1 1

/ 2

2 3
/ 2 / 2 / 2

i'
4

e e .

mon

b ikr ikr
p p
n n

b y a y a

p

u u dy dy
r r

ωρ
π

∞

− −∞ =− =

= ×

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪+⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫ ∫

x

y y

(25) 

The velocity distribution at the surface Sint is determined by 
Eq. (20) for the boundary layer. Although this velocity distri-
bution is not potential, it is the cause of the volume velocity 
that is responsible for sound radiation. Therefore, the velocity 
distribution in the boundary layer can be used in Eq. (25) as 

p
nu .  

It can be shown that Eqs. (12) and (13) lead to the following 
approximation: 

i i 3

1

e e 1 i cos , cos .
kr kx

j
j j j

j

x
k y

r x x
θ θ

=

⎛ ⎞
≈ − =⎜ ⎟

⎝ ⎠
∑  (26) 

The normal component of the velocity on both sides of the 
transitional region needs to be taken with respect to the direc-
tion of the normal to the boundary of the region. Therefore, 
the following equation is satisfied: 

( ) ( )2 3 2 3/ 2, , / 2, , ,p p
n nu a y y u a y y− = −  (27) 

With the substitution of Eqs. (20), (26) and (27) into Eq. (25) 
the following equation for 'monp  can be obtained: 

( ) ( )3/ 2i i 1
0

0 1 2 3
/ 2

e' cos .
4

ybkx

mon
b

p U ka e dy dy
x

δωρ θ
π

∞
−

− −∞

≈ − ∫ ∫x  (28) 

After taking the integral and using Eq. (18) for the boundary 
layer thickness Eq. (28) leads to the final equation for the 
sound pressure amplitude radiated by the monopole sources: 

( ) ( )
i

2
0 0 0 1

1 e' i 1 cos .
4

kx

monp U c k ab
x

ρ δ θ
π

= − +x  (29) 

Note that the radiation has dipole directivity with the dipole 
axis coinciding with the direction of the plate vibrations. 

The second term in the right-hand part of Eq. (23) represents 
the dipole sources due to the pressure at the boundary Sint. 
The pressure acting upon the transitional region from the 
boundary layer is determined by the corresponding compo-
nent of the stress tensor, pij (Eq. (3)): 

( ) ( ) ( )1
13

3

' .
u

p p
y

µ
∂

= = −
∂

y
y y  (30)  

The substitution of  Eq. (17) for u1 to Eq. (30) leads to  

( ) ( )3 1

0 3
i 1' e , 0.

y i
p U yδµ

δ
−−

= − >y  (31) 

It can be shown that, in far field of an acoustically small ob-
ject (Eqs. (12) and (13)), the following approximation is sat-
isfied: 

i i
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1
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∑

m
 (32) 

where the top and bottom signs correspond to 
1 / 2.y a= ±  

The substitution of Eqs. (31) and (32) into the second term in 
Eq. (23) results in the following equation for the sound am-
plitude generated by the dipole sources: 
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 (33) 

Taking the integrals in Eq. (33) leads to the following equa-
tion for the pressure amplitude of the sound wave generated 
by dipole sources: 

( )
i

2 2
0 0 0 1

1 e' i cos .
2

kx

dipp U c k b
x

ρ δ θ
π

=x  (34) 

Eqs. (29) and (34) clearly show that the sound due to 
forces, ( )'dipp x , and the sound due to the volume velocity, 

( )'monp x , have the directivity of a dipole. The ratio of the 

amplitudes of these two components of the sound is deter-
mined by 

' 2 .
'

dip

mon

p
p a

δ
=  (35) 

It is clearly seen that, due to Eq. (14), ' 'dip monp p<< .   

Eqs (23), (29) and (34) lead to the following equation for  the 
acoustic pressure calculated by non-uniform Kirchhoff’s 
equation: 

( ) ( ) ( )

( )
i

2
0 0 0 1

' ' '

1 e 1 i 1 i cos .
2 2

K mon dip

kx

p p p

U c k b a
x

ρ δ δ θ
π

= + =

⎛ ⎞− + +⎜ ⎟
⎝ ⎠

x x x
 (36) 

APPLICATION OF FW-H EQUATION TO THE 
PLATE VIBRATIONS 

In the FW-H equation (Eq. (11)), the first term on the right   
describes the quadrupole sources and is identical to the corre-
sponding term in the non-uniform Kirchhoff equation. It is 
shown above that the sound amplitude determined by this 
term is, in fact, the total sound amplitude predicted by the 
non-uniform Kirchhoff equation (Eq. (36)). 

The monopole sources in the FW-H equation are described 
by the second term on the right. It is clear that this term van-
ishes, as the normal component of the velocity of the plate is 
zero (the plate vibrates in its own plane). Therefore, the 
sound radiated by the monopole sources also vanishes. 
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The total force, P, in the third (dipole) term of the FW-H 
equation, includes both the normal component (pressure) and 
the viscous component of the force. It is clear from Eq. (11) 
that the normal component of the force does not generate any 
sound, as the forces acting upon the two sides of the plate 
cancel each other. 

Therefore, the amplitude of the sound predicted by the FW-H 
equation is determined as follows: 

( ) ( )
i

1
1

1 e' ,
4

kr

visc
S

p P dS
y rπ
⎛ ⎞∂

= − ⎜ ⎟∂ ⎝ ⎠
∫∫x y  (37) 

and y1-component of the force, P1(y), can be expressed 
through the stress tensor (Landau & Lifshitz 1959): 

( ) ( ) ( )3 1
1

1 13 0
3

i 1e .
y

iuP p U
u

δµ µ
δ

−∂ −
= = − = −

∂
y y  (38) 

Inserting Eqs. (38) and (32) into Eq. (37) one can obtain the 
following equation for the sound radiated due to viscous 
forces according to the FW-H equation: 

( ) ( )
i

2
0 0 0 1

1 ei 1 cos .
4

kx

viscp U c k ab
x

ρ δ θ
π

= +x  (39) 

As stated above, the terms describing the sound radiated by 
Lighthill’s quadrupole sources in the fluid volume are identi-
cal in both equations and determined by Eq. (36). Therefore, 
adding together Eq. (36) and Eq. (39) leads to the following 
equation for the sound pressure amplitude as predicted on the 
basis of the FW-H equation: 

( )
i

2 2
0 0 0 1

i e' cos .
2

kx

FW Hp U c k b
x

ρ δ θ
π− =x  (40) 

Note that the two added terms partially cancel each other. 

COMPARISON OF THE TWO EQUATIONS FOR 
THE RADIATED SOUND 

Eqs. (36) and (40) represent the predictions for the radiated 
sound amplitude obtained on the basis of non-uniform 
Kirchhoff and FW-H equations respectively. It can be clearly 
seen that, due to the assumption that the boundary layer is 
thin (Eq. (14)), the prediction of the FW-H equation is much 
smaller in amplitude than that of the non-uniform Kirchhoff 
equation. Phases of both sound waves are also different. 

Whereas the current analysis does not provide direct confir-
mation or otherwise for any of these two formulations, it is 
the opinion of the present author that non-uniform Kirchhoff 
equation should take preference due to the following two 
factors.  

First, the non-uniform Kirchhoff equation is simply the most 
general solution of Lighthill’s wave equation in the presence 
of solid boundaries, and Lighthill’s equation is derived on the 
basis of the most general mass and momentum conservation 
laws of fluid motion. The FW-H equation is also derived on 
the basis of the conservation laws, but these laws are first 
considered at a boundary with discontinuity in velocity and 
stresses and then applied to a rigid boundary. It is the view of 
the present author that this application of the conservation 
laws is questionable, but a re-consideration of this issue is 
outside the scope of this article. 

The second factor in favour of the non-uniform Kirchhoff 
equation is a more physically justified mechanism of sound 
generation. As shown above, according to the non-uniform 
Kirchhoff formulation, the sound is generated by Lighthill’s 
quadrupole sources in the transitional region between the 
boundary layer and the rest of the fluid. This mechanism of 
sound generation appears to be more physically rational than 
the one assumed in the FW-H formulation, where the sound 
is generated directly by tangential viscous stresses on the 
plate. Whereas undoubtedly these stresses are the ultimate 
source of the acoustic energy transferred from the vibrating 
plate to the fluid, they cannot compress the surrounding fluid, 
and, therefore, can radiate sound only indirectly through the 
interaction between the viscous boundary layer generated by 
them and the rest of the fluid. 

POSSIBLE EXPERIMENTAL VERIFICATION OF 
THE OBTAINED RESULTS 

As both formulations predict significantly different sound 
amplitudes for the case under consideration, conducting di-
rect measurements of the sound radiated by such a vibrating 
plate could prove useful for verification of these methods. 
However, such measurements may be difficult due to very 
low intensity of the radiated sound. Therefore, other experi-
mental arrangements may be necessary for this purpose. 

The results obtained in this paper demonstrate that, apart 
from being significantly different in the absolute value, the 
acoustic wave amplitudes predicted by the FW-H and non-
uniform Kirchhoff formulations are different in phase (Eqs. 
(36) and (40)) due to their different physical origin. There-
fore, it may be helpful for the purpose of verification to com-
pare not the amplitudes or intensities, but the phases of the 
predicted and measured sound wave relative to the plate mo-
tion. 

The anechoic wind tunnel experiment with a vortex street by 
Leclercq and Doolan (2009) can be considered analogous to 
the plate vibrations described here. In both cases, the sound is 
generated due to the interaction between a rotational fluid 
flow, a solid object, and the rest of the fluid. Therefore, due 
to this analogy, it can be expected that the phases of the 
sound waves predicted by the two equations will also be dif-
ferent. As a result, measurements of the phase of the acoustic 
signal may provide a way to prove or disprove the FW-H  or 
other formulations for prediction of the sound radiated by a 
fluid flow. 

RECOMMENDATIONS FOR APPLICATION OF 
THE FW-H AND NON-UNIFORM KIRCHHOFF 
EQUATIONS 

On the one hand, there are situations where the FW-H and 
non-uniform Kirchhoff equations produce identical results. 
For example, a comparative study of these two formulations 
has been published by Brentner and Farassat (1997), who 
concluded that both formulations were equivalent in linear 
and inviscid flow. The analysis above shows that, indeed, 
these two conditions lead to the equivalence of the third (di-
pole) term in the FW-H equation (Eq. (11)) and the non-
uniform Kirchhoff equation (Eq. (8)).  

At the same time, for the second (monopole) terms in the two 
equations to be equivalent, one more condition should be 
satisfied. Namely, the fluid flow should be purely potential, 
i.e. it should not contain any vorticity. This is clear from Eq. 
(8), where the monopole term is not simply the total velocity 
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of the fluid, but the velocity that is determined through the 
pressure gradient (Eq. (7)), i.e. the potential velocity. 

It can be concluded that both equations are equivalent in a 
linear and potential flow. Consequently, both of them are 
applicable to tasks of linear acoustics, including sound scat-
tering and generation problems which do not involve turbu-
lent (rotational) flow. 

At the same time, in most real-world situations of sound gen-
eration by a fluid flow, the flow is turbulent and, therefore, 
vorticity cannot be neglected. In such situations, the non-
uniform Kirchhoff equation can be recommended for use as a 
better established and justified formulation. 

The influence of flow non-linearity on the sound radiation is 
not considered in this analysis, as it is carried out for a linear 
flow (Eq. (16)). 

As for practical recommendations how to control the sound 
produced by the mechanism considered in this paper, it can 
be concluded from Eqs. (18) and (36) that the sound ampli-
tude is proportional to the area of the plate, to the wavenum-
ber (i.e. frequency) in the power 3/2, and to the square root of 
the fluid viscosity. Therefore, changing these parameters will 
correspondingly affect the radiated sound  amplitude. 

CONCLUSIONS 

In this article, the Ffowcs Williams and Hawkings (FW-H) 
and non-uniform Kirchhoff formulations for the evaluation of 
aerodynamic sound are considered. It is shown that the two 
formulations contradict each other. This contradiction is due 
to the fact that the latter formulation takes into account only 
normal pressure on the surface, whereas the former formula-
tion also includes viscous tangential forces on the surface. 

Both formulations are applied to sound radiation by a thin 
rigid plate vibrating in its own plane in a viscous fluid. A few 
simplifying assumptions are utilised in the analysis. Calcula-
tion by means of the non-uniform Kirchhoff equation show 
that all sound sources are concentrated in a thin transitional 
region between the viscous boundary layer and the rest of the 
fluid. In addition to these sources, which are identical in both 
formulations, in the FW-H formulation viscous forces on the 
boundary also produce sound. When the two components of 
the sound are added together, they partially cancel each other 
and, as a result, the sound amplitude predicted by the FW-H 
equation is much smaller than that predicted by the non-
uniform Kirchhoff equation. 

As the sound waves predicted by these two equations are 
different in phase, it is suggested that the experimental verifi-
cation of both formulations can be done by measuring the 
phase of the sound instead of its amplitude. Such measure-
ments can be carried out using an existing experimental 
setup. 

It is recommended that, due to its better physical justification, 
the non-uniform Kirchhoff formulation should be used for 
calculation of aerodynamic sound generated by a turbulent 
flow. In linear potential flow both formulations are equiva-
lent. 
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