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ABSTRACT

In order to reduce the sound power radiated by a submarine, the transmission of fluctuating forces from the propeller to
the hull can be reduced by implementation of a resonance changer in the propulsion system. A resonance changer acts
as a hydraulic vibration absorber and can be modelled as a single degree-of-freedom system with virtual mass, stiffness
and damping parameters. However, changing the dynamics of the propeller/shafting system can lead to increased sound
radiation from the propeller. A numerical finite element/ boundary element model of a submarine has been developed
in order to find optimum design parameters for the resonance changer, such that the overall sound power radiated from
the hull as well as the propeller is reduced. The global optimum virtual stiffness, damping and mass parameters of the
resonance changer have been found by applying the method of moving asymptotes. It is shown that the influence of
sound radiation from the propeller is only relevant, if higher harmonics of the blade passing frequency are assumed to
have a similar amplitude as the fundamental harmonic of the blade passing frequency.

INTRODUCTION

An important mechanism that causes sound radiation from a
submarine is the operation of the propeller in a non-uniform
wake (Carlton 1994). This mechanism leads to fluctuating for-
ces correlated to the blade passing frequency (bpf) at the pro-
peller hub, leading to sound radiated directly from the pro-
peller and to excitation of the submarine hull through the shaft.
The vibration excited by the forces can be correlated to the ac-
cordion modes of the pressure hull which are efficient sound
radiators (Norwood 1995).

In order to reduce the radiated sound power of a submarine, a
fully coupled finite element/boundary element model has been
developed to minimise a cost function that represents the ra-
diated sound power over a given frequency range. At low fre-
quencies (<100 Hz), the fluctuating forces at the propeller are
assumed to be harmonic and linear. Hence, the analysis has
been conducted in the frequency domain using the Helmholtz
equation for the exterior radiation/scattering problem. The sub-
marine is a complex, non-homogeneous structure, but its dif-
ferent parts may be represented by simplified physical models
such as shells, rods and spring-mass-damper systems. The nu-
merical approach used here to solve the strong fully coupled
structure/fluid problem in the low frequency range, where the
densities of the structure and the fluid are of similar order, is the
combination of the finite element (FE) method to represent the
structure and the boundary element (BE) method to represent
the fluid (Zienkiewicz and Taylor 2005, Brebbia and Ciskowski
1991, Amini et al. 1992).

The propeller/shafting system comprises of the propeller, pro-
peller shaft, thrust bearing, foundation and a device known as
a resonance changer (RC), which acts as a dynamic hydraulic
vibration absorber (Goodwin 1960). Dylejko developed sim-
plified, analytical submarine models to find optimum design
parameters for different RC configurations in order to minimise
the maximum radiated sound pressure rather than the over-
all radiated sound power (Dylejko et al. 2007, Dylejko 2008).
A genetic optimisation strategy was used for the optimisation
process. Due to simplifications in the analytical models such as
omission of the tailcone and pressure field from the propeller,

the complex interaction between the propeller and the subma-
rine hull was not taken into account.

In contrast to analytical methods, numerical methods allow the
development of more detailed and complex structural mod-
els. However, the computational cost is much higher and non-
gradient based optimisation methods such as genetic algorithms
are not viable. Hence, gradient based optimisation techniques
are preferred and the sensitivity of the cost function to struc-
tural design parameters is computed. In previous work by the
authors, the structural and acoustic responses of a submarine
were presented for fixed parameters of the RC, where excita-
tion of the submarine hull due to fluid forces was taken into ac-
count (Merz et al. 2009a). In this paper, the focus is on optimis-
ing the RC parameters of a submarine. Numerical models of
the sound power radiated by a submarine are presented, where
the sensitivity of the weighted sound power over the relevant
frequency range to design parameters of the propeller/shafting
system has been computed. The sensitivity is obtained in a
semi-analytical way by employing the adjoint operator
(Marburg 2002). Optimum parameters are found for the vir-
tual stiffness, damping and mass of the RC by applying the
globally convergent method of moving asymptotes (Svanberg
2002).

DYNAMIC MODEL OF THE SUBMARINE

A dynamic model to describe the low frequency structural and
acoustic responses of a submarine has been presented previ-
ously by the authors (Merz et al. 2009a). The pressure hull was
modelled as a thin-walled cylinder with evenly spaced ring-
stiffeners of rectangular cross-section and two evenly spaced
circular plates that represent the bulkheads. As the end plates
of a submarine pressure hull are stiffin comparison to other
parts, they have been modelled as rigid plates. In order to ac-
count for the contribution of the on-board machinery and inter-
nal structure to the dynamic behaviour of the submarine, a dis-
tributed mass has been attached to the cylindrical shell of the
pressure hull (Tso and Jenkins 2003). The submarine model is
shown in Fig.1.
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Figure 1: Submarine hull

The propeller/shafting system was modelled in a modular man-
ner as shown in Fig.2 (Dylejko et al. 2007), where the pro-
peller force and velocity amplitude are given byfp and vp,
respectively. The hull drive point force and velocity are de-
noted byfh andvh. The propeller as well as the added mass ef-
fect of the surrounding water for the propeller are represented
by a lumped massmp. The propeller dimensions for calculat-
ing the propeller mass and the fluid loading effect are chosen
by assuming that the propeller volume is1/1000 of the volume
displaced by the pressure hull. The propeller diameter is as-
sumed to be half the pressure hull diameter. The propeller shaft
was modelled as a simple rod with an effective lengthlse and
an overall lengthls as shown in Fig.2, where the overhang
was represented by a lumped mass. The shaft properties are
also defined by its cross-sectional areaAs, Young’s modulus
Es and densityρs. The thrust bearing was assumed to act as
a spring-mass-damper system with massmb, damping coeffi-
cient cb and spring constantkb. The resonance changer is lo-
cated between the thrust bearing and the foundation as shown
in Fig.?? and has been modelled as a spring-mass-damper sys-
tem according toGoodwin(1960). The RC is represented by
virtual mass, damper and spring parameters, which are calcu-
lated by (Goodwin 1960)

mr =
ρrA2

0L

A1
; cr = 8πµL

A2
0

A2
1

; kr =
A2

0B

V
. (1)

ρr is the density of the hydraulic medium,µ is the dynamic
viscosity andB is the bulk modulus of the oil in the RC.V
is the volume of the reservoir,A1 is the cross-sectional area
of the pipe,L is the pipe length andA0 is the cross-sectional
area of the cylinder. The foundation is simplified as a truncated
cone for the axisymmetric model with end radiia and b as
shown in Fig.2. The Young’s modulus, density, Poisson’s ratio
and thickness of the foundation are given byEf , ρf , νf andhf ,
respectively.

COUPLED FE/BE MODEL

In this work, the radiated sound power from a coupled vibro-
acoustic system with additional discrete sources in the fluid
domain has been evaluated. This was accomplished by repre-
senting the structure using finite elements and representation
of the fluid using boundary elements, where strong coupling is
considered at the structure/fluid interface (Merz et al. 2009a).
Strong coupling involves the acoustic medium influencing the
dynamic behaviour of the structure, as the densities of fluid
and structure are of similar order. Under the assumption that
an acoustically hard surface is present, the continuity condi-
tion requires that the displacement of the fluid equals the dis-
placement of the structure normal to the surface. In addition,
the pressure of the fluid results in an external distributed force
on the structure normal to the surface. The combined problem
is mathematically expressed as

S(ω)x(ω) = y(ω), (2)

where the linear operatorS is composed of the BE and FE
system matrices and the geometric coupling matrices. The un-
known vectorx contains the nodal displacements of the FE
model as well as the acoustic pressure in the collocation points
for the BE model, and can be found by formally invertingS.
The vectory represents the exciting structural forces and con-
tributions from fixed sources in the acoustic domain.ω is the
radian frequency. For the models presented in this work, non-
matching meshes have been used. This requires a piecewise
relaxation of the continuity condition by means of Mortar ele-
ments (Belgacem 1999).

SOUND FIELD RADIATED BY THE PROPELLER

An analytical model for the sound field radiated by the pro-
peller is presented inMerz et al.(2009a). The sound field is
the combination of contributions from (i) the hydrodynamic
mechanism that arises from the propeller operating in a non-
uniform wake and (ii) the axial fluctuation of the propeller due
to vibration of the propeller/shafting system. The sound radia-
tion that corresponds to the axial force on the propeller hub is
given by the dipole

p(r, θ) = jkg(r) f

(

1−
j

kr

)

D(θ), (3)

wherek is the fluid wave number,θ is the angle between the
field point direction and the force direction,f is the amplitude
of the exciting force,r is the distance between the source and
the field point, D(θ) = cosθ is the directivity function and

g(r) =
e−jkr

4πr
(4)

is the free space Green’s function.

The contribution due to (ii) resulting from vibration of the pro-
peller can be computed using a rigid disc approximation. The
pressure is also given by equation (3) and the directivity func-
tion is (Morse and Ingard 1968)

D(θ) =
2J1(kasinθ)

kacosθ
≈ cosθ, smallka, (5)

where J1 is the first order Bessel-function anda is the disc
radius. The force acting on the fluid is obtained in terms of the
axial propeller velocityvp by

f = 2szczavp, (6)

wheres= πa2 is the area of the disc surface,zc is the character-
istic impedance of the fluid andza is the radiation impedance.
The radiation impedance can be expressed as the sum of its
real and imaginary parts, corresponding to the resistancera

and the reactancexa, respectively. The resistance and reactance
can be obtained under the assumption that a freely suspended
disc reveals twice the admittance of a disc in an infinite baffle
(Mellow and Kärkkäinen 2005). For smallka, this gives

ra =
8(ka)4

27π2
, xa =

4ka
3π

. (7)

2 Australian Acoustical Society



Proceedings of ACOUSTICS 2009 23–25 November 2009, Adelaide, Australia

Propeller Shaft
Thrust
bearing

Resonance
changer Foundation

mp

ls

lse mb

cb

kb

cr

kr

mr

a b

fp fhvp vh

As, Es, ρs

Ef, ρf, νf , hf

Figure 2: Propeller/shafting system (Dylejko et al. 2007)
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Figure 3: Detail of the propeller/shafting system

SENSITIVITY OF THE RADIATED SOUND POWER

The sound power radiated through a surfaceΛ is given by (Wu
2000)

Π(ω) =
1
2

∫

Λ

p(ω)v∗(ω)dΛ, (8)

wherep is the acoustic pressure of the fluid andv is the normal
velocity of a fluid particle at the surface. As the radiated sound
power of the discrete sources in the fluid domain is not implic-
itly known, a surface enclosing the sources and the structure
has to be chosen in order to evaluate the overall radiated sound
power. If the surfaceΛ is spherical and in the far-field with
respect to the sound sources, then equation (8) simplifies to
(Ross 1987)

Π(ω) ≈
1

2ρc

∫

Λ

p(ω)p∗(ω)dΛ, (9)

whereρ is the density of the fluid andc is the speed of sound.
The sound pressure can be expressed as a piecewise interpola-
tion, where the pressure is given at a set of discrete points. For
the purpose of integration, Gaussian integration points are cho-
sen to interpolate the pressure. A discrete version of equation
(9) is obtained by considering the fluid and geometry proper-
ties of the surfaceΛ in a matrix

Π(ω) = pH(ω)Θp(ω). (10)

If x is known, then the vector of discrete pressuresp on the
surfaceΛ can be explicitly obtained by (Merz et al. 2009b)

p(ω) = T(ω)x(ω) + pinc(ω). (11)

The transfer matrixT is obtained by integration over the vi-
brating surface of the structure andpinc represents the pressure
contribution from discrete sources in the fluid domain at the
integration points of the surfaceΛ.

The sensitivity of the radiated sound power to a set of structural
design parametersϑ of the vibrating structure, that do not have
an influence on the scatterer’s surface geometry, is obtained by
differentiation of equation (10). Omitting theω dependence,
differentiating equation (10) gives

∂Π

∂ϑ
= 2pH

Θ
∂p
∂ϑ

. (12)

The sensitivity of the pressure at the integration points with
respect to the design parameters is obtained by differentiation
of equation (11), and is given by

∂p
∂ϑ
= T

∂x
∂ϑ

. (13)

In order to obtain an expression for the sensitivity of the vector
x with respect to the design parameters, equation (2) has to be
differentiated which yields

S
∂x
∂ϑ
+
∂S
∂ϑ

x =
∂y
∂ϑ

. (14)

Equation (14) can then be reordered such that an expression
for the sensitivity of the vectorx with respect to the design
parameters is obtained and is given by

∂x
∂ϑ
= S−1

(

∂y
∂ϑ
−
∂S
∂ϑ

x
)

. (15)

In order to compute the sensitivity of the sound power, equa-
tions (12), (13) and (14) can be combined in an adjoint operator
formulation (Marburg 2002)

∂Π

∂ϑ
= 2pH

ΘTS−1

(

∂y
∂ϑ
−
∂S
∂ϑ

x
)

. (16)

Let bT = 2pH
ΘT andzT = bTS−1, then the sensitivity of the

sound power can be found for any set of parametersϑ, as long
as the solution of the system of equationsSTz = b is known.
This means that for an arbitrary number of structural design
parameters, only two systems of equations have to be solved.

OPTIMISATION

For optimisation of the resonance changer parameters, the fol-
lowing cost function has been defined to represent the radiated
sound power over the frequency range of interest (Marburg
2002)

J =
1
∆ω

∫

ω

Π(ω)dω. (17)

The gradient of the cost function can be obtained by differen-
tiating equation (17) with respect to the design parametersϑ,
and is given by

∂J
∂ϑ
=

1
∆ω

∫

ω

∂Π(ω)
∂ϑ

dω. (18)

The problem of minimising the radiated sound power can be
written as

minimiseJ(ϑ),

subject to ϑ ≤ ϑ ≤ ϑ,
(19)

whereϑ and ϑ are the lower and upper bounds for the de-
sign parameters, respectively. As the first derivatives of the cost
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function J with respect to the design parametersϑ are explic-
itly available, an appropriate family of methods to find local
minima are the quasi-Newton algorithms (Haftka and Gurdal
1992). An example of such an algorithm that is applicable to
equation (19) is the limited memory Broyden–Fletcher–Gold-
farb–Shanno algorithm with parameter bounds (L-BFGS-B)
(Byrd et al. 1995). However, applying the L-BFGS-B directly
to equation (19) can require a large number of computationally
expensive cost function evaluations. In addition, the process
can get easily trapped in a numerically related local minimum.
In order to reduce the number of required evaluations ofJ and
∂J
∂ϑ

, an iterative algorithm can be applied, where the problem is
locally approximated by an explicit subproblem

minimiseF(ϑ)(k),

subject to ϑ
(k)
≤ ϑ ≤ ϑ

(k)
,

(20)

for an iteration pointk. The subproblem is solved using the
L-BFGS-B. The optimum parameters for the subproblem rep-
resent the next iteration point and the formulation for the next
subproblem is modified based on data from previous iterations.
The iteration is stopped when certain convergence criteria are
fulfilled. An example for this approach is the method of mov-
ing asymptotes (MMA), where asymptotes are used to approxi-
mate the cost function (Svanberg 1987). For the algorithm used
in this paper, inner iterationsl are conducted in addition to
the outer iterationsk. This approach is called the globally con-
vergent method of moving asymptotes (GCMMA) (Svanberg
2002). The cost function is approximated near the iteration
points using

F(ϑ)(k,l) =

n
∑

i=1















q(k,l)
i

ϑ
(k)
i − ϑi + σ

(k)
i

+
r (k,l)

i

ϑi − ϑ
(k)
i + σ

(k)
i

−
q(k,l)

i + r (k,l)
i

σ
(k)
i















+ J(ϑ(k)) (21)

wheren represents the number of parameters,i is the index
for a parameter,ϑ(k) represents the optimal solution from the
last outer iteration step andσ(k) are the moving asymptotes.
The asymptotes are moved after each outer iteration. If the
process oscillates, the asymptotes are moved closer to the it-
eration point to make the approximation more conservative. In
contrast, if the process is slow, the asymptotes are moved away
from the iteration point. The coefficientsq(k,l)

i andr (k,l)
i are given

by

q(k,l)
i =

(

σ
(k)
i

)2
max

{

0,
∂Ji

∂ϑi

(

x(k)
)

}

+
ψ(k,l)σ

(k)
i

4
, (22)

r (k,l)
i =

(

σ
(k)
i

)2
max

{

0,−
∂Ji

∂ϑi

(

x(k)
)

}

+
ψ(k,l)σ

(k)
i

4
, (23)

where the parameterψ(k,l) is adjusted for the inner iteration in
order to achieve global convergence. This is accomplished by

increasingψ(k,l) until J
(

ϑ̂
(k,l)

)

is smaller thanF
(

ϑ̂
(k,l)

)

, where

ϑ̂
(k,l)

denotes the optimal solution for the subproblem of the in-

ner iteration. Subsequentlŷϑ
(k,l)

becomes the next outer itera-
tion pointϑ(k). Rules for updating the parametersσ

(k) andψ(k,l)

and for the definition ofϑ(k) andϑ
(k)

can be found inSvanberg
(2002).

RESULTS

Results are presented for optimisation of the RC virtual damp-
ing, stiffness and mass parameters using different cost func-
tions. Results are also given for the sensitivity of some cost
functions to these parameters near the optimum. ANSYS 11
was used to generate the FE and BE meshes and to compute

the FE stiffness, mass and damping matrices. All other compu-
tations were conducted using software implemented in SciPy
and C++. For efficient generation of the results, the calculation
of the cost function has been parallelised with respect to the
frequency using the Message Passing Interface (MPI), by em-
ploying a method similar to that described inMiller and Davis
(1992). Integration over the frequency range was implemented
in an adaptive manner by comparing results for the Simpson
rule to results for the trapezium rule. A minimum number of
210 integration points was used. System matrices that are in-
dependent of the design parameters have been precomputed
and stored in a database at a step size of 0.1 Hz.

Properties of the submarine’s propeller/shafting system and
hull are given in Tables1 and2, respectively. By taking into
account physical feasibility as described inDylejko (2008), the
RC virtual damping was varied between 5×103 to 1.1×106 kg/s.
Ranges from 1.5× 107 to 1.5× 109 N/m and from 1 to 20 tonnes
were chosen for the RC virtual stiffness and mass, respectively.

Table 1: Parameters for the propeller/shafting system

Parameter Value Unit

Propeller diameter 3.25 m
Propeller structural mass 10 tonnes
Propeller added mass of water 11.443 tonnes
Shaft Young’s modulus 200 GPa
Shaft Poisson’s ratio 0.3
Shaft density 7800 kg/m3

Shaft cross-sect. area 0.071 m2

Shaft length 10.5 m
Effective shaft length 9 m
Bearing mass 0.2 tonnes
Bearing stiffness 2× 1010 N/m

Bearing damping 3× 105 kg/s

Resonance changer mass 1 tonne
Foundation major radius 1.25 m
Foundation minor radius 0.52 m
Foundation half angle 15 deg
Foundation thickness 10 mm
Foundation Young’s modulus 200 GPa
Foundation density 7800 kg/m3

Table 2: Parameters for the submarine hull

Parameter Value Unit

Cylinder length 45.0 m
Cylinder radius 3.25 m
Shell thickness 0.04 m
Stiffener cross-sectional area 0.012 m2

Stiffener spacing 0.5 m
Young’s modulus of structure 210 GPa
without foundation
Young’s modulus of foundation 200 GPa
Poisson ratio of structure 0.3
Density of structure 7800 kg/m3

Structural loss factor 0.02
Added mass 796 kg/m2

Stern lumped mass 188 tonnes
Bow lumped mass 200 tonnes
Cone half angle 24 deg
Cone length 9.079 m
Cone smaller radius 0.3 m
Density of fluid 1000 kg/m3

Speed of sound 1500 m/s
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Figure 4: Radiated sound power with and without the use of an
RC

Optimisation

The globally convergent method of moving asymptotes
(GCMMA) was used to find optimum design parameters of the
resonance changer. Eight different initial parameter sets were
used, where the 3-dimensional parameter space was initially
subidivided by three, such that the starting sets resulted from
the 2× 2× 2 intersections. When the cost function values dif-
fered by less than 1−20 W between two subsequent iterations,
convergence was assumed. The computations were obtained
using a cluster of six Pentium 4 CPUs at 3 GHz, where an op-
timisation run required about 40 minutes. Two cost functions
according to equation (17) were considered, where for the first
cost function, sound radiation due to propeller vibration was
neglected and for the second cost function, sound radiation due
to propeller vibration has been taken into account. The cost
functions were obtained by integration of the sound power due
to a force weighted with(ω/∆ω)2 from 1 to 100 Hz. This is
because the force increases proportionally with the square of
the propeller rotational velocity.

For the cost function where sound radiation due to propeller
vibration has been neglected, six out of the eight sets of initial
parameters lead to a common minimum with a function value
of around 7.19×10−13 W. A global optimum for the RC param-
eters was found for a cost function value of 7.1865× 10−13 W,
wherecr = 4.3657× 105 kg/s, kr = 3.0024× 108 N/m andmr =

1 tonne. For the cost function where sound radiation due to pro-
peller vibration was taken into account, seven out of the eight
sets of initial parameters converged to a common minimum,
where the cost function value of 2.6745× 10−13 W was given
for cr = 1.1× 106 kg/s, kr = 5.3818× 108 N/m andmr = 1 tonne.

Figure4 shows the radiated sound power, when no RC is im-
plemented, when an optimised RC according to the first cost
function is implemented, and when an optimised RC accord-
ing to the second cost function is implemented. The peaks in
the radiated sound power at around 20, 45 and 70 Hz repre-
sent the first three hull axial resonances. The maximum sound
radiation occurs at the fundamental propeller/shafting system
resonance which occurs at around 37 Hz. For the majority of
the frequency range, the radiated sound power for a submarine
model with no RC is significantly higher than for the subma-
rine model with an RC that has been optimised using any of
the cost functions. The curves for the cost functions are sim-
ilar, but the radiated sound power for the cost function where
sound radiation due to propeller vibration has been taken into
account is slightly lower for frequencies above about 70 Hz.
This is attributed to the fact that the sound radiation in the high
frequency range is strongly correlated to propeller vibration.
A higher RC virtual damping obtained using the cost function
where sound radiation from the propeller has been taken into
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Figure 5: Cost function, when sound radiation due to propeller
vibration is neglected

acount leads therefore to a decrease of radiated sound power at
higher frequencies.

Sensitivity analysis

In order to investigate the influence of the RC parameters on
the radiated sound power, the sensitivity of the cost functions
to the RC virtual damping and stiffness has been investigated.
The sensitivity of the cost functions to the RC virtual mass
has been omitted as all investigated cost functions resulted in
the same RC virtual mass of 1 tonne. This value has also been
found previously byDylejko (2008). Hence, the optimum RC
virtual mass parameter of 1 tonne has been used for the sensi-
tivity analyses presented here.

Results for the cost function where sound radiation due to pro-
peller vibration has been neglected is given in Fig.5. Low val-
ues for the cost function are obtained by using small values for
the RC virtual stiffnesskr. In this case, the propeller/shafting
system becomes more flexible and uncoupled from the hull.
The RC virtual dampingcr has only a notable influence for
higher values of kr, when the coupling between the
propeller/shafting system and the hull is strong. In this case, an
increase of the damping leads to a decrease of the cost function
values.

The radiated sound power for the maximum and minimum val-
ues of the cost function in Fig.5 is presented in Fig.6. It can be
seen that for the maximum cost function values, the fundamen-
tal propeller/shafting system resonance is detunded to around
27 Hz, but peak sound radiation still occurs. For the minimum
cost function value, the fundamental propeller/shafting system
resonance is detuned to about 14 Hz and peak sound radiation
occurs at higher frequencies above about 80 Hz, where no de-
crease in radiated sound power can be observed.

The sensitivities of the cost function where sound radiation due
to propeller vibration has been neglected, with respect to the
RC virtual damping and stiffness, are shown in Figs.7 and
8, respectively. It can be seen that the minimum cost function
value is stable with respect to the RC virtual dampingcr. How-
ever, moderate changes of the RC virtual stiffnesskr may lead
to an increase of sound radiation.

Results for the cost function where sound radiation due to pro-
peller vibration is taken into account are given in Fig.9. It can
be seen that an increase of the RC virtual damping leads to
lower values forJ. Two distinct local maxima of the cost func-
tion can be identified. The first local maximum occurs at the
upper limit for kr and the lower limit forcr. The second lo-
cal maximum occurs at the lower limit for both the RC virtual
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Minimum atcr = 4.4×105 kg/s, kr = 3.0×108 N/m

Maximum atcr = 5.0×103 kg/s, kr = 1.5×107 N/m
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Figure 6: Radiated sound power at the maximum and mini-
mum values of the cost function, when sound radiation due to
propeller vibration is neglected
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Figure 7: Sensitivity of the cost function when sound radia-
tion due to propeller vibration is neglected, with respect to the
virtual damping of the RC

stiffnesskr and dampingcr. The variation of sound power with
frequency is shown in Fig.10for the corresponding RC param-
eters. For the first local maximum, the cost function is domi-
nated by sound radiation at the fundamental propeller/shafting
system resonance. In this case, the fundamental resonance of
the propeller/shafting system has been decreased from 37 Hz
to 27 Hz when compared to the results shown in Fig.4 with no
RC. For the second local maximum, the cost function is domi-
nated by the sound power due to propeller vibration in the high
frequency range, since a decrease of the values forcr andkr in-
volves an increase of the propeller/shafting system axial flex-
ibility. For the minimum cost function value, the fundamental
hull resonance can be barely observed at around 18 Hz. Due to
the frequency weighting, the contribution of the radiated sound
power to the cost function is small at this frequency.

The sensitivity of the cost function when sound radiated due to
propeller vibration is taken into account, with respect to the vir-
tual damping and the virtual stiffness of the resonance changer,
is shown in Figures11and12, respectively. The plots are simi-
lar to the results for the cost function, when sound radiation due
to propeller vibration has been neglected. The major difference
occurs for the sensitivity of the cost function with respect to the
virtual damping, which is increased for low values ofkr. It can
be seen in Fig.9 that the first maximum of the cost function
at the lower limits of the RC parameters is primarily sensitive
to the RC stiffness, whereas the second maximum of the cost
function at the lower limit of the RC virtual damping and the
upper limit of the RC virtual stiffness is primarily sensitive to
the RC virtual damping. It can be concluded that an increase
in RC virtual stiffness reduces axial propeller vibration in the

∂J
∂kr

(WN/m)

8.0e-20
6.0e-20
4.0e-20
2.0e-20
0.0e+00
-2.0e-20
-4.0e-20
-6.0e-20
-8.0e-20

kr (N/m)

1.5e+09

1.2e+09

9.0e+08

6.0e+08

3.0e+08

cr (kg/s)

1.0e+068.0e+056.0e+054.0e+052.0e+05

Figure 8: Sensitivity of the cost function when sound radia-
tion due to propeller vibration is neglected, with respect to the
virtual stiffness of the RC
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Figure 9: Cost function when sound radiation due to propeller
vibration is considered

higher frequency range. An increase in RC virtual damping
will primarily lower sound radiation at the propeller/shafting
system fundamental resonance.

CONCLUSIONS

Optimum design parameters for a passive vibration attenua-
tion device known as a resonance changer have been found us-
ing a fully coupled vibro-acoustic model for a submarine. The
overall radiated sound power in the low frequency range has
been minimised, where sound radiated from the hull as well
as sound radiated from the propeller has been taken into ac-
count. Cost functions have been obtained by integration of the
frequency-weighted radiated sound power over the frequency
range of interest. In order to use gradient based optimisation,
the sensitivity of the cost function to the design parameters
was also computed using an adjoint operator formulation. The
globally convergent method of moving asymptotes has been
applied in conjunction with the L-BFGS-B method to find the
optimum virtual damping, stiffness and mass parameters for
the resonance changer. With respect to the parameter space,
eight equally distributed initial parameter sets have been used,
where at least six optimisation runs resulted in a common min-
imum.

The influence of sound radiation due to propeller vibration has
been investigated. It has been shown that inclusion of sound
radation due to propeller vibration leads to a higher RC vir-
tual damping parameter which reduces axial vibration of the
propeller/shafting system, and therefore sound radiation due to
propeller vibration. The parameter space has been visualised
for cost functions when sound radiation due to propeller vi-
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Minimum atcr = 1.1×106 kg/s, kr = 5.4×108 N/m

Maximum atcr = 5.0×103 kg/s, kr = 1.5×107 N/m

Maximum atcr = 5.0×103 kg/s, kr = 1.5×109 N/m
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Figure 10: Radiated sound power at the maximum and mini-
mum values of the cost function, when sound radiation due to
propeller vibration is considered
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Figure 11: Sensitivity of the cost function when sound radia-
tion due to propeller vibration is considered, with respect to
the virtual damping of the RC

bration has been both neglected and included, by keeping one
optimum parameter constant.
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