
Proceedings of ACOUSTICS 2009 23–25 November 2009, Adelaide, Australia

Transient Detection in Impulsive Noise Using
Low-Variance Spectrum Estimation

Dragana Carevic
Maritime Operations Division, DSTO, Bldg A-51, HMAS Stirling, Rockingham, 6958, Australia

ABSTRACT

This paper considers the problem of detecting unknown bandpass acoustic transients in highly impulsive ambient noise
such as that produced by snapping shrimp. Standard transient detection techniques apply the periodogram which is
a classical direct nonparametric spectrum estimation method. The periodogram can be limited due to its poor bias
properties resulting from substantial sidelobe leakage and is an inconsistent estimator in the sense that its variance
does not decrease with the sample size. We propose the use of low-variance spectrum estimation techniques such as
multitaper spectrum estimation whereby the power spectrum estimate is obtained as an average of a number of direct
spectrum estimates computed using different windows (or tapers). In addition, methods for improving power spectrum
estimates based on denoising by wavelet thresholding are considered. Detectors derived based on these approaches are
tested using artificially generated bandpass transients inserted in impulsive ambient sea noise.

INTRODUCTION

Detection of passive acoustic transients in an underwater en-
vironment is a hard problem as ambient noise may be non-
stationary and is usually corrupted by noises produced from
biological and man-made sources. In warm shallow underwa-
ter environments noise is often dominated by extremely short,
highly impulsive snaps produced by snapping shrimp (Versluis
et al. 2000). The snaps are broadband with frequencies cover-
ing the range from about 600 Hz up to 250 kHz and the su-
perposition of large number of snaps leads to sustained back-
ground crackle that is commonly heard in warm coastal waters
(Cato and Bell 1992). This paper investigates the detection of
bandpass transients of unknown spectral and temporal charac-
teristics in highly impulsive noise, such as that dominated by
snapping shrimp, where it is assumed that the time duration of
the signal to be detected is much longer than the duration of
individual snaps.

Detectors usually exploit the notion that transient signal is a
localized burst in time and that its spectrum covers a contigu-
ous frequency band. Signals may also have local oscillatory
behavior thereby yielding high spectral peaks. Many current
transient detectors apply an appropriate linear transform, such
as wavelet (Del Marco and Weiss 1997; Liu and Fraser-Smith
2000; Plett 2007), Gabor (Friedlander and Porat 1989; Fried-
lander and Porat 1993), or Fourier transform (Nuttall 1996;
Nuttall 1997; Streit and Willett 1999), to the received signal.
The transform is expected to match the characteristics of the
transient and to condense the signal into a few transform coef-
ficients with large magnitude while in the absence of a transient
the distribution of the transform coefficients is spread.

Several transient detectors that use discrete Fourier transform
(DFT) and discrete wavelet transform (DWT) (S. G. Mallat
1989), and are based on the Nuttall’s ‘power-law’ detector (Nut-
tall 1996), are described in Wang and Willett 2001. These de-
tectors enable prewhitening (or self-normalisation) of unknown
noise levels and allow for a constant false-alarm rate (CFAR)
detection. Besides, they are easy to implement and make mini-
mal assumptions about the structure of the transient signal. The
use of the DFT in these detectors is equivalent to using the pe-
riodogram, which is a classical direct nonparametric method
for spectrum estimation of a stationary random time series. It
is computed as the magnitude-squared DFT of the (possibly
zero-padded) windowed time series, and in Wang and Willett
2001 the window is rectangular.

Although the periodogram provides a fast method to compute
an estimate of the power spectrum, it can be limited due to its
poor bias properties resulting from substantial sidelobe leak-
age. This estimator is also inconsistent in the sense that its vari-
ance does not decrease with the sample size. In order to tackle
this problem a multiple window (or multitaper) spectrum esti-
mation technique is proposed whereby a number of direct spec-
trum estimates are computed, each by using different window
(or taper), and these estimates are averaged (Thompson 1982).
The tapers are chosen to be pairwise orthogonal and are de-
signed so as to prevent leakage. This method gives a consistent
spectrum estimator with a variance inversely proportional to
the number of tapers used (Percival and Walden 1993).

A spectrum estimate obtained either as a periodogram or by us-
ing the multitaper method, can be further enhanced by apply-
ing denoising techniques based on wavelet thresholding (Per-
cival and Walden 1993; Donoho and Johnstone 1994), (Gao
1997; Moulin 1994; Walden, Percival, and McCoy 1998; Cristan
and Walden 2002). This approach utilises the notion that the
logarithm of the spectrum estimate of an input time series can
be represented as "signal" plus "noise," with the signal being
equal to the true log spectrum (Percival and Walden 1993; Gao
1997). Then, a wavelet transform is first applied to the loga-
rithm of the power spectrum estimate and the resulting wavelet
coefficients are measured against a threshold; if they fall be-
low this threshold they are counted as noise and set to zero.
The smooth estimate of the log spectrum is next obtained by
inverting the thresholded wavelet representation. Initially the
periodogram is used as the input spectrum estimate (Gao 1997;
Moulin 1994) and this technique is improved by replacing the
log periodogram with the log of a multitaper spectrum estima-
tor computed using L sine tapers (Walden, Percival, and Mc-
Coy 1998; Cristan and Walden 2002).

The paper is organised as follows. Section 2 explains the mul-
titaper spectrum estimation and gives some details about refin-
ing spectrum estimates by using wavelet denoising techniques.
Section 2 describes approaches to computing detection statis-
tics for transient detection using the estimated spectra. The test
results obtained using artificially generated bandpass transients
with different bandwidths inserted in impulsive ambient acous-
tic noise are presented in Section 4. Finally, Section 5 contains
some concluding remarks.
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LOW-VARIANCE SPECTRUM ESTIMATION

Multitaper Spectrum Estimation

Given the N-dimensional observation vector x=(x1,x2, . . . ,xN),
a multitaper spectrum estimate of x is defined by

Ŝk(x) =
1
L

L−1

∑
l=0

Ŝl,k(x) (1)

with

Ŝl,k(x) =

∣∣∣∣∣
N

∑
i=1

vl,i xi e− j2π(k−1) (i−1)/N

∣∣∣∣∣
2

(2)

where vl = (vl,1,vl,2, . . . ,vl,N) is the lth data taper used to com-
pute the spectral estimate Ŝl,k(x), l = 0,1, . . . ,L−1, k, 1 ≤ k ≤
N denotes the spectral bin number, and j =

√−1. The tapers
are chosen to be pairwise orthonormal, i.e., ∑i vl,ivm,i = 1 for
m= l and ∑i vl,ivm,i = 0 for m ∕= l. In the special case L= 1, the
estimator (1) becomes a tapered periodogram estimator, and if
the tapering is also uniform (i.e., v1,1 = v1,2 = . . .= v1,N = 1

N )
it is called the periodogram estimator. Therefore, for L > 1, the
estimator (1) is a linear combination of L orthogonal tapered
periodogram estimators. The resulting spectrum estimate is su-
perior to the periodogram in terms of the reduced bias and vari-
ance.

Thompson 1982 used Slepian or discrete prolate spheroidal se-
quences (DPSS) as the tapers. DPSS are unique orthogonal se-
quences that maximise the spectral concentration of the win-
dow main lobe within [−W,W ], where W is the prescribed
main lobe width expressed in units of normalised frequency,
0 < W < 1/2, and have good leakage properties. The number
of tapers L is chosen to be less then 2NW . Additionally, Riedel
and Sidorenko 1995 propose the use of sine tapers defined by

vl,i =

√
2

N +1
sin

π(l +1)i
N +1

, i = 1,2, . . . ,N.

The sine tapers are easy to compute. They also produce smaller
local bias than the DPSS and have roughly same spectral con-
centration.

Smoothing the Spectrum Estimate by Wavelet Thresh-
olding

Assuming that the eigenspectra in (2) are uncorrelated, the ra-
tio of the estimated multitaper spectrum Ŝk(x) to the true power
spectrum Sk(x) can be approximated by a chi-squared distribu-
tion with 2L degrees of freedom, i.e., as (Percival and Walden
1993)

νk =
Ŝk(x)
Sk(x)

∼ χ2
2L

2L
. (3)

Then the random variable (rv) ηk defined by

ηk = logνk −ψ(L)+ logL (4)

is approximately correlated zero mean Gaussian with known
variance σ2

η =ψ ′(L), where ψ(⋅) and ψ ′(⋅) denote respectively
digamma and trigamma functions. Applying logarithm to (3)
and using (4) we have

log Ŝk(x)−ψ(L)+ logL = logSk(x)+ηk (5)

that is, the log multitaper spectrum (plus a constant (logL−
ψ(L))) can be written as the true log spectrum plus approxi-
mately correlated Gaussian noise with zero mean and known
variance σ2

η . The model in (5) is well suited for wavelet denois-
ing with a goal of removing the noise term ηk and obtaining the
smooth estimate of the log spectrum.

A number of methods have been proposed for signal denois-
ing based on thresholding wavelet coefficients (Donoho and
Johnstone 1994; Donoho 1995; Donoho and Johnstone 1995;
Krim et al. 1999; Johnstone and Silverman 1997). We briefly
describe only those that are relevant for this paper. Denote
by {z j,m} a set of wavelet coefficients computed by apply-
ing a DWT to the signal representation on the left side of (5)
where subscript j indicates decomposition level (or scale) and
m, m = 1, . . . ,N/2 j is the wavelet coefficient index associated
with the scale j. By the linearity of the DWT it follows from
(5) that

z j,m = s j,m +n j,m (6)

where {s j,m} are wavelet coefficients of logSk(x) and {n j,m}
are wavelet coefficients of ηk.

Hard and soft thresholding functions can be used for noise re-
duction (Donoho 1995). The hard thresholding function, for a
given threshold T , is defined by

δh =

{
z, if ∣z∣ ≥ T
0, otherwise (7)

and the soft thresholding function is defined by

δs =

⎧
⎨
⎩

z−T, if z ≥ T
0, if ∣z∣< T
z+T, if z ≤−T.

(8)

For either soft or hard thresholding it is important to deter-
mine an appropriate threshold level T . A simple approach is
to use scale-independent thresholding whereby one threshold
is applied to all wavelet coefficients independent of the scale
j (Walden, Percival, and McCoy 1998). This method uses the
assumption that noise is Gaussian distributed and uncorrelated.
The threshold does not depend on the input data, but only on
the noise variance σ2

η and is given by T = ση
√

2logN.

However, the noise term ηk in (4) is stationary and coloured,
so the variance of the corresponding noise wavelet coefficients
n j,m depends on level (or scale) j of the wavelet decomposition.
Walden, Percival, and McCoy 1998 investigated the correlation
structure of ηk across frequencies and devised a method to esti-
mate the level-dependent variances of the wavelet coefficients
σ2

j . In this level-dependent thresholding scheme the threshold
T at each scale j of the DWT is computed as T = σ j

√
2logN.

Another thresholding scheme using the principle of minimis-
ing Stien’s unbiased estimate of risk (SURE) is proposed by
Donoho and Johnstone 1995 and Johnstone and Silverman 1997.
For a specified threshold T and the signal z = {zm}N

m=1, the
Stien’s unbiased estimate of risk using the soft thresholding
function is given by

R̂(T ;z) = σ2N +
N

∑
i=1

{
min(z2

i ,T
2)−2σ2I(∣zm∣ ≤ T )

}
(9)

where σ2 is noise variance and I is an indicator function, I(⋅) =
1 if ∣zm∣ ≤ T and I(⋅) = 0 if ∣zm∣> T . A SURE threshold is then
selected as

TSURE = arg min0≤T≤σ
√

2logN R̂(T ;z). (10)

In the cases where the data is dominated by noise, the SURE
threshold is found to be too small. A hybrid thresholding scheme
is proposed as a combination of the SURE threshoding and a
fixed thresholding method (Donoho and Johnstone 1995). This
scheme decides whether to use the SURE threshold or the fixed
threshold σ

√
2logN based on the test of the significance of the
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presence of the signal in the data. In particular, the threshold is
computed by

T =

{
σ
√

2logN, s2
d ≤ ηd

TSURE , s2
d > ηd .

(11)

where s2
d = N−1 ∑N−1

i=0 x2
i −σ2 and ηd = σ(log2 N)1.5/

√
N.

A level-dependent hybrid thresholding that assigns a threshold
to each dyadic level j of the DWT can be devised by using
level-dependent variances σ j in (10) and (11). These variances
are computed as

σ j =
MAD(z j,m)

0.6745
(12)

where MAD(z j,m) is the median absolute deviation of the wavelet
coefficients at the decomposition level j, and 0.6745 is a nor-
malising factor (Johnstone and Silverman 1997).

Denote the spectrum refined by wavelet denoising as W (Ŝk(x)).
Given the spectrum estimate Ŝk(x) the procedure for comput-
ing W (Ŝk(x)) is summarised by the following steps:

1. Obtain Zk(x) = log Ŝk(x)−ψ(L)+ logL where L is the
number of tapers used to compute the multitaper spec-
trum estimate Ŝk(x).

2. Apply a standard periodic DWT (S. G. Mallat 1989) to
Zk(x) to obtain the wavelet coefficients z j,k at each level
j.

3. Apply thresholding to the wavelet coefficients up to the
decomposition level q0 keeping the wavelet coefficients
at the levels above q0 and the scaling coefficient un-
changed. The thresholding method is either scale-independent
or scale-dependent as decribed above.

4. Apply the inverse DWT to the thresholded coefficients
to obtain the refined log spectrum.

5. Compute the estimate W (Ŝk(x)) by applying the expo-
nential function to the estimated log spectrum.

NON-GAUSSIAN TRANSIENT DETECTOR STRUC-
TURE

The transient detection process is formalised in terms of bi-
nary hypothesis testing. Consider an N-dimensional complex-
valued observation vector x = (x1,x2, . . . ,xN) where the ith
complex sample xi is given by

xi = xI
i + jxQ

i . (13)

and where the superscripts I and Q indicate in-phase and quadra-
ture components of the data respectively. We test a hypothesis
H1 that the observation vector x contains a transient signal em-
bedded in additive noise against a null hypothesis H0 that the
data contains only a realisation of a wide sense stationary noise
random process. The transient is taken to be entirely contained
within the window of N data samples, and noise is assumed to
be non-Gaussian and impulsive. Also, it is assumed that band-
with and centre frequency, duration and time of arrival of the
transient are not known.

Usually, the detection of signals in impulsive noise involves
initially passing the data through a non-linearity with a goal
of suppressing samples with large instantaneous envelope. Lo-
cally optimum detectors use parametric non-linearities that re-
quire detailed knowledge of the noise statistics (Chitre, Pot-
ter, and Ong 2006). As an approximation to parametric non-
linearities Lu and Eisenstein 1983 propose the use of non-parametric,
suboptimal, non-linearity that does not require the knowledge
of the noise statistics. They define this non-linearity by

g(yi) =

{ 1
yi
, yi > 0

0, yi = 0
(14)

where yi is the instantaneous envelope of the complex sam-
ple xi

yi =

√
(xI

i )
2 +(xQ

i )
2. (15)

and use it in the detection of band-pass and narrow-band sig-
nals in highly impulsive noises.

Using the non-linearity in (14) we define the modified (prepro-
cessed) observation vector x̃ = (x̃1, x̃2, . . . , x̃N) as

x̃i =

( N

∑
i=1

yη
i

)
g(yi)xi, i = 1,2, . . . ,N (16)

where ∑N
i=1 yη

i is a weighting factor and η is an appropriately
chosen constant. The use of the weighting factor in (16) im-
proves the detection performance for transients with larger band-
widths at high SNR’s. Since, again, we wish to compress the
samples with large instantaneous envelope that are due to snap-
ping shrimp noise, we set η < 1.

The transient detection process involves a comparison of the
observation vector x to a complex-valued noise-only vector
n (see (Plett 2007) and (Wang and Willett 2001)). The non-
overlapping data block of the same length as the input signal x
that immediately precedes x in time is assumed to be transient-
free and is used as an estimate of the noise vector n. The fol-
lowing 3 functions are used to define the transient detectors
tested in this paper

f1,k(x̃, ñ) =
Ŝk(x̃)− Ŝk(ñ)

Ŝk(ñ)
=

Ŝk(x̃)
Ŝk(ñ)

−1 (17)

f2,k(x̃, ñ) =
W (Ŝk(x̃))
W (Ŝk(ñ))

−1 (18)

f3,k(x̃, ñ) = W

(
Ŝk(x̃)
Ŝk(ñ)

)
−1 (19)

where Ŝk(⋅) is a power spectrum estimate, W (Ŝk(⋅)) is the spec-
trum estimate refined by denoising based on wavelet threshold-
ing, and ñ represents the result of processing the noise vector
n using (16).

In (19) denoising by wavelet thresholding is applied to the
spectrum estimates related to signal-plus-noise and noise-only
time series x̃ and ñ separately, and the ratio of the resulting
refined spectra is then obtained. By contrast in (20) wavelet
denoising is applied to the ratio of the two estimated spectra
Ŝk(x̃)/Ŝk(ñ). Hu and Loizou 2004 showed that the logarithm
of the ratio of the estimated signal-plus-noise and noise-only
spectra Ŝk(x̃)/Ŝk(ñ) can be modelled as the logarithm of the ra-
tio of the true spectra Sk(x̃)/Sk(ñ) plus a Gaussian distributed
noise with the variance σ2

η = 2ψ ′(L). Therefore the procedure
for spectrum enhancement by wavelet thresholding given by
steps 1-5 in Section 2.2 can also be applied to the spectral ratio
Ŝk(x̃)/Ŝk(ñ).

The functions fr,k(x̃, ñ), r = {1,2,3}, in (18)-(20) can have neg-
ative values, in particular in the noise-only spectral bins related
to the input signal x. Therefore, these functions are further pro-
cessed as

f {P}
r,k (x̃, ñ) =

{
fr,k(x̃, ñ), fr,k(x̃, ñ)> 0
0, fr,k(x̃, ñ)≤ 0. (20)

Finally, using f {P}
r,k (x̃, ñ) in (20) the detection statistics D(x) is

then defined by

D(x) =
Kmax

∑
k=Kmin

(
f {P}
r,k (x̃, ñ)

)ν
(21)
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where r ∈ {1,2,3}, Kmin and Kmax, Kmax > Kmin, Kmin ≥ 1,
Kmax ≤ N, are the spectral bin numbers that correspond to the
lowest and the highest frequency of interest in the power spec-
trum, and the exponent ν is real and its value is chosen based
on the characteristics of the signal to be detected (Nuttall 1996;
Wang and Willett 2001). For the band-pass transients consid-
ered in this paper 1.5 ≥ ν ≥ 3.

DETECTOR PERFORMANCE

Based on the functions fr,k(x̃, ñ), r = {1,2,3} in (18)-(20), we
formulate 8 detection statistics that use different preprocessing,
spectrum estimation, and wavelet denoising techniques. Four
detectors denoted by PMT, PPER, MT and PER are based on
the function f1,k(x̃, ñ) in (18). The PMT detector is computed
using multitaper spectrum estimation with L tapers and the in-
put signals x̃ and ñ are preprocessed using (16). The PPER
detector also applies preprocessed input signals, and computes
the spectra using a standard tapered periodogram. The detec-
tors denoted by MT and PER apply multitaper spectrum es-
timates and the periodograms, respectively, but utilise unpro-
cessed input signals x and n. The remaining 4 detectors are
based on the functions f2,k(x̃, ñ) and f3,k(x̃, ñ). They use exclu-
sively multitaper spectrum estimates of the preprocessed input
signals and apply denoising by wavelet thresholding. The de-
tectors based on the function f2,k(x̃, ñ) are designated by W1-
PMT and W2-PMT. The detector W1-PMT applies soft scale-
independent wavelet thresholding whereas W2-PMT is com-
puted using scale-dependent thresholding based on the SURE
principle. The detectors based on the function f3,k(x̃, ñ) are de-
noted by W3-PMT and W4-PMT; they also use, respectively,
the same two denoising techniques.

To test the performance of the detectors we use a 27 minutes
long set of ambient noise data collected off the cost of Western
Australia. The sampling rate is 192 kHz, the water depth is 10
meters and the seabed is sandy/muddy. The intense sustained
cracking noise characteristic of snapping shrimp can be heard
when listening to the data on audio.

The spectral pass-band chosen for the analysis is centered at
6100 Hz and has bandwith 10200 Hz. The raw data received by
the sensor is initially complex demodulated by shifting the cen-
tre of the pass-band to zero frequency, low-pass filtering and
then decimating appropriately. The resulting sampling rate af-
ter the decimation is 12 kHz. A ten seconds long segment of in-
phase complex demodulated time-series is shown in Fig. 1(a).
The values of the kurtosis computed using in-phase and quadra-
ture time-series within consecutive 2 seconds long segments
of the data set, where in-phase and quadrature components are
taken to be independent and identically distributed, are shown
in Fig. 1(b).

The simulated transients used for testing are generated as ran-
dom band-pass Gaussian signals of length 0.4 s for a number
of signal bandwidths. The transient center frequencies are se-
lected randomly in such a way that the signals fall entirely
within the pass-band [1100,10000] Hz. The ambient noise data
is divided in two halves and in-phase and quadrature time-
series from both halves are further divided into non-overlapping
segments of length 0.7 s. The test transient signals are added
to the segments from the second half of the data set at a range
of SNR’s. The signal variance σ2

t is chosen so that

SNR = 10log10
Nt σ2

t
N σ2

n
(22)

where Nt denotes transient length, N is segment length, and σ2
n

is noise variance estimated using data samples from the current
segment. The transient starting times are selected randomly so
that the signals are entirely contained within the corresponding
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Figure 1: (a) A ten seconds long segment of in-phase time se-
ries for the complex demodulated data; (b) kurtosis computed
using in-phase and quadrature time-series within consecutive
2 second long segments.

segments. The segments from the first half of the data are taken
to be noise-only (or transient-free).

The detection statistics described above are computed for each
data segment and SNR, where the segments are taken to be the
observation vectors x. The noise-only (transient-free) segment
that immediately precedes the current segment in the data set
is used as the estimate of the noise vector n. The detection
statistics computed using the segments from the first half of the
data are utilised to determine probabilities of false alarm Pf a
for a number of detection thresholds. These thresholds are also
applied to the detection statistics computed using the segments
from the second half of the data to obtain the probabilities of
detection Pd for the required values of Pf a at different SNR’s.

Since for denoising by wavelet thresholding the estimated power
spectra need to be processed using a standard periodic DWT, it
is required that the length of the spectrum be dyadic. In a gen-
eral case the length of the underlying signals x and n is not
dyadic, so these vectors need to be appropriately zero-padded
to attain the dyadic length of ND = 2p, where p is chosen such
that 2p−1 < N ≤ 2p. The multitaper power spectra are com-
puted using the zero-padded time series (Walden, Percival, and
McCoy 1998) and the periodograms are computed using the in-
put signals of the original length and the Hanning window. For
each spectrum the spectral components from two neigbouring
spectral bins are summed thus exploiting frequency contiguity
of transient signals (Plett 2007; Wang and Willett 2001). The
resulting spectra are further processed as described in Section 3
and used to compute detection statistics. The thresholds for
wavelet thresholding are computed as T = σ

√
2logND where

the noise variance σ2 depends on the particular thresholding
method used (see Section 2.2). The DWT is computed using
Symmlet wavelet of order 4 (symmlet4) (S. Mallat 2001) and
the decomposition level to which the thresholding is applied is
q0 = 4. The summation in (21) is done over the spectral bin
numbers between Kmin and Kmax, where Kmin and Kmax are
chosen so as to correspond to the frequencies 1100 Hz and
10000 Hz, respectively. We also set η = 0.5 in (16).

Figs. 2(a)-(d) show examples of the functions fr,k(x̃, ñ), r =
{1,2,3} in (18)-(20), where the observation vector contains a
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Figure 2: Examples of functions fr,k(x̃, ñ), r = {1,2,3}, for an
observation vector x that contains a transient signal with band-
with 3000 Hz and cetre frequency 3457 Hz at SNR -6 dB (a)
f1,k(x̃, ñ) computed using multitaper spectrum estimates with
L = 6 tapers (b) f1,k(x̃, ñ) computed using periodograms with
Hanning taper (c) f2,k(x̃, ñ) computed using multitaper spec-
trum estimates with L = 6 tapers and spectrum denoising with
scale-independent wavelet thresholding for signal-plus-noise
vector x (solid line) and noise-only vector x (dashed line) (d)
f3,k(x̃, ñ) computed using multitaper spectrum estimates with
L = 6 tapers and spectrum denoising with scale-dependent
wavelet thresholding for signal-plus-noise vector x (solid line)
and noise-only vector x (dashed line).

transient signal with bandwith BT = 3000 Hz and centre fre-
quency CFT = 3457 Hz inserted into a segment of ambient
noise at the SNR of -6 dB. In all examples both observation and
noise vectors are preprocessed using (16). Figs. 2(a) and (b)
show function f1,k(x̃, ñ) computed, respectively, using multita-
per spectra estimated with L = 6 tapers and the periodograms
computed with Hanning window. Figs. 2(c) and (d) show the
results of applying denoising by wavelet thresholding to the
multitaper spectra estimated using L = 6 tapers. Fig 2(c) shows
function f2,k(x̃, ñ) computed using scale-independent wavelet
thresholding and Fig 2(d) shows function f3,k(x̃, ñ) processed
by level dependent thresholding based on the SURE principle.
Also, in Figs. 2(c) and (d) dashed curves represent functions
f2,k(x̃, ñ) and f3,k(x̃, ñ), respectively, computed using noise-
only (transient-free) observation vector x.

The performance of the detectors depends on a number of pa-
rameters, such is the number of tapers used to compute mul-
titaper spectrum estimates and the parameter ν in (21), and,
also, on the bandwidth of transient signals. In the following
we present the results that show how detector performance de-
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Figure 3: Probability of detection as a function of Pf a for SNR
of -5 dB for PMT detectors where multitaper spectrum esti-
mates are obtained using L = {20,10,6,3} tapers. The tran-
sients used in the tests have bandwith BT = 3000 Hz. Detec-
tion statistics are computed by setting ν in (21) to (a) ν = 1.6
and (b) ν = 2.5.

pends on these parameters.

Figs. 3(a) and (b) show the probability of detection Pd as a func-
tion of Pf a for SNR of -5 dB for PMT detectors where the pa-
rameter ν takes, respectively, values ν = 1.6 and ν = 2.5. Mul-
titaper spectrum estimates are obtained using L= {20,10,6,3}
tapers and the corresponding detectors are denoted by PMT20,
PMT10, PMT6, and PMT3. The transients used in the tests
have bandwith BT = 3000 Hz and centre frequency is randomly
selected. For comparison Figs. 3(a) and (b) also show test re-
sults for PPER detector computed using periodograms of the
preprocessed vectors x̃ and ñ and for PER detector computed
using periodograms of the unprocessed signals. It can be seen
that PMT detectors perform much better than PER and PPER
detectors in particular at lower SNR’s. Also, the performance
of PMT detectors for L ≥ 6 is somewhat better for ν = 2.5
then for ν = 1.6, whereas the performance of other detectors
deteriorates for the larger value of this parameter.

Figs. 4 and 5 show the probability of detection Pd as a function
of SNR for all 8 detectors where the detection statistics that
depend on multitaper spectrum estimation are computed us-
ing different number of tapers and the parameter ν = 2.5. The
probability of false alarm is Pf a = 0.003 and the test transient
signals are the same as in Fig. 3. In Figs. 4(a) and (b), where
L = {10,6} respectively, it can be seen that the performance
of the detectors based on wavelet thresholding is comparable
to that obtained using PMT detectors. In Figs. 5(a) and (b),
where L = {3,1}, wavelet-based detectors give much better re-
sults than the corresponding PMT detectors. However, the per-
formance of all wavelet-based detectors for different L in Fig. 4
and 5 is very similar even in the case where L = 1 (note that the
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Figure 4: Probability of detection as function of SNR for Pf a =
0.003 for all detectors. Bandwidth of transients used in the tests
is BT = 3000 Hz and ν = 2.5. Detectors based on multitaper
spectrum estimation use different number of tapers: (a) L = 10
tapers (b) L = 6 tapers.

spectral estimates obtained for L = 1 are periodograms). So, it
can be concluded that the performance of detectors that use
wavelet thresholding does not depend on the number of tapers
L used. The performance of MT, PPER and PER detectors is
much worse as compared to other detectors.

We also tested the proposed detectors using transient signals
with different bandwidths. Figs. 5(a) and (b) show the prob-
ability of detection Pd as a function of Pf a for fixed SNR of
-11 dB for all 8 detectors where the bandwidths of the test tran-
sients are BT = {200,1000} Hz. Figs. 6(a) and (b) show the
probability of detection Pd as a function of Pf a for fixed SNR
of -5 dB for all 8 detectors where the bandwidths of the test
transients are BT = {3000,5000} Hz. In both Figs. 5 and 6 the
number of tapers used to compute detection statistics based
on multitaper spectrum estimation is L = 6 and the parame-
ter ν = 2.5. It can be seen that the detectors that use multi-
taper spectrum estimation and the input signal preprocessed
using (16) perform well for all signals bandwidths. The per-
formance of these detectors is also much better than the per-
formance of other detectors. For the transient signals with a
smaller bandwidth of BT = 200 Hz in Fig. 5(a) PMT6 detec-
tor performs as well as W1-PMT6 detector and better then
other wavelet-based detectors. For the transient signals with
larger bandwidths BT = {1000,3000,5000} Hz in Fig. 5(b)
and Figs. 6(a) and (b) the performance of detectors based on
wavelet thresholding is better than that of PMT6 detector. Gen-
erally, good performance of the detectors for the transients with
larger bandwidths and at high SNR’s is achieved by using the
weighting factor in (17).

CONCLUSION

This paper considered the problem of detecting unknown band-
pass transients buried in impulsive non-Gaussian noise. The
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Figure 5: Probability of detection as function of SNR for Pf a =
0.003 for all detectors. Bandwidth of transients used in the tests
is BT = 3000 Hz and ν = 2.5. Detectors based on multitaper
spectrum estimation use different number of tapers: (a) L = 3
tapers (b) L = 1 tapers.

proposed approaches apply low-variance spectrum estimation
techniques. One of these techniques is Thomson’s multitaper
spectrum estimation whereby the power spectrum is estimated
as an average of a number of direct spectrum estimates com-
puted using different tapers. This is a consistent spectrum esti-
mator with a variance inversely proportional to the used num-
ber of tapers. The other technique involves spectrum enhance-
ment that applies spectrum denoising by wavelet thresholding.
Several detectors have been derived based on these two meth-
ods where the input signals are preprocessed using a memory-
less non-linear filter. The detectors are tested using artificially
generated bandpass transient signals inserted in impulsive am-
bient sea noise.

The detectors that use multitaper spectrum estimation computed
with the preprocessed input signals are found to perform better
than the detectors based on periodograms and those that use
multitaper spactrum estimation with unprocessed (raw) input
signals when the number of tapers used to compute spectrum
estimates is L ≥ 6. However, the performance of multitaper
detectors deteriorates as the number of tapers decreases. The
detectors based on wavelet thresholding are found to perform
comparably to the detectors that utilise multitaper spectrum
estimates computed using L ≥ 6 tapers. These detectors also
give good results when the underlying spectrum estimates are
obtained using only one taper, which is equivalent to a peri-
odogram. It is therefore concluded that the performance of the
detectors that apply denoising by wavelet thresholding does
not depend on the number of tapers used to obtain the spectrum
estimates, and can be applied directly to the periodograms.

Additionally, the proposed detectors that utilise low-variance
spectrum estimators of the preprocessed input signals are tested
using the transients with different bandwidths. It is concluded
that they perform well over a wide range of signal bandwidths
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Figure 6: Probability of detection as function of Pf a computed
for all detectors for a fixed SNR of -11 dB. Detectors based on
multitaper spectrum estimation use L = 6 tapers and ν = 2.5.
Bandwidths of transients used in the tests and fixed SNR’s are:
(a) BT = 200 Hz (b) BT = 1000 Hz.

and that their performance is better as compared to the detec-
tors that utilise only periodograms and unprocessed input sig-
nals.
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