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ABSTRACT

Both low- and high-frequency disc brake squeal, first studied some 80 years ago, remain of concern to automotive
NVH departments due to customer warranty claims. Despite both intensive and extensive research, disc brake squeal
is still not well understood. It is a very complex problem which involves many different disciplines, such as tribology,
structural vibration, acoustic radiation and dynamic instabilities. While there has been considerable research in the first
two areas (tribology and vibration analysis), the prediction of brake squeal through acoustic radiation calculations using
numerical methods has remained largely unexplored. In this paper, the influence of the geometrical designs of brake
pad on brake squeal is studied using a simplified brake setup consisting of an annular disc in contact with one brake pad.
The various configurations of a brake pad studied here has been influenced by those used in the industrial testing of a
full brake system. In this study, unstable vibration modes were first identified by the conventional complex eigenvalue
analysis of a finite element model of the simplified brake system. Then, the acoustic power was calculated for a range
of frequencies and friction coefficients using the acoustic boundary element method. It is shown that the performance
of the various pads, in terms of brake squeal propensity caused by their geometric differences, could be ranked based
on contour plots of acoustic power with friction coefficient and frequency as the independent variables. These results
indicate that the inclusion of acoustic power calculations, following a complex eigenvalue analysis of unstable vibration
modes, provides improved prediction of brake squeal propensity.

INTRODUCTION

Disc brake squeal is a major concern of the automotive indus-
try Noise, Vibration and Harshness (NVH) departments as well
as of customers worldwide. Usually, it appears in a frequency
range from 1− 20kHz (Kinkaid et al. 2003) and is different
from brake judder, which is found in a frequency range below
1000Hz (Jacobsson 2003). Squeal itself can be separated into
sub-groups, namely, low- and high-frequency squeal. The for-
mer is generally classified as squeal around 5kHz and below
the frequency of the first rotor in-plane mode.

The most comprehensive of the review papers on disc brake
squeal has been provided byKinkaid et al.(2003) to address
the general problem of brake squeal, the development of ana-
lytical, numerical and experimental methods and various mech-
anisms that underpin brake squeal. The work byAkay (2002)
discusses, more particularly, the contact problem and friction-
induced noise. The contribution made byOuyang et al.(2005)
focusses predominantly numerical methods in analysing brake
squeal. Other literature reviews of the recent years have been
written by Papinniemi et al.(2002), Oberst & Lai (2008) and
Hoffmann & Gaul(2008), in which state-of-the-art and future
challenges are discussed. In this paper, the sound radiation of
a simplified brake system, in the form of an annular disc in
contact with a pad, is studied. Structural analyses of annular
discs are well-known. In a first approximation, annular discs
are considered as platesJunger & Feit(1986) which are dif-
ferentiated as being thin or thick. For a brake rotor, the thin
plate theory is usually not applicable. A review of thick plate
theories has been written byLiew et al. (1995) and a thick
plate’s particularly non-linear behaviour has been described by
Sathyamoorthy(1983). However, these review articles cover
only structural analyses. A comprehensive book, which also
deals with theacoustic propertiesof plates and, among other
structures, annular discs, has been written byJunger & Feit
(1986). However, as stated byLee & Singh (2005), little is
yet known concerning their acoustic radiation. For thick discs,
coupling effects between in-and out-of-plane rotor motion be-

come important. Multi-mode excitation is for instance present,
when the brake pad slides on the brake disc, as stated byEwins
(2000) and has a strong effect on sound radiation (Lee & Singh
1994). The eigenfrequency becomes dependent on rotational
speed and which induces the split of modes hence the coupling
of modes is more likely to happen (Cote et al. 1998). Inter-
estingly, an annular disc is able to produce the same in-plane
and out-of-plane pattern as a real brake rotor, hence is a suit-
able simplification (Lee & Singh 2002). The hat structure and
its ratio to the rotor thickness and diameter becomes impor-
tant when considering the coupling between in-& out-of-plane
rotor modes (Lee & Singh 2002),(Bea & Wickert 2000). No
pad nor friction was considered by Lee & SinghLee & Singh
(2002, 2004, 2005). It was found, that when friction was ap-
plied, the bifurcation point only gave highest sound pressure
level, which afterwards declined (Oberst & Lai 2009a). How-
ever, frictional sound caused by rubbing plates of different ma-
terial against each other has already been analysed by means
of radiation efficiencies (Stoimenov et al. 2002, 2005). The au-
thors stated that radiation efficiencies can be used to charac-
terise the acoustic properties of a tribo-system. In another pa-
per byStoimenov et al.(2005), radiation efficiency was inves-
tigated by considering parameter variations between different
surfaces in contact. With increasing speed, higher load and
greater roughness, the generated noise increased. Due to the
roughness, the dominant peaks in the sound signal shifted to
a higher frequency. Nowadays, in Noise, Vibration and Harsh-
ness (NVH) departments of brake system manufacturers, the
Complex Eigenvalue Analysis (CEA) method applied to finite
element (FE) model of a brake system is generally accepted
as a standard tool for analysing brake squeal, whereby unsta-
ble vibration behaviour is identified by a positive real part of
the complex eigenvalues (ie, negative damping). It is known
that this type of analysis over-predicts the number of unstable
modes and not all instabilities are revealedBajer et al.(2004).
Since brake squeal is perceived acoustically and not all unsta-
ble vibration modes would result in squeal noise, it seems nec-
essary to have a closer look at the acoustic radiation of a brake
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system.

This paper is, therefore, focused on bringing together the tech-
niques of structural vibration finite element method (FEM) and
acoustic boundary element method (BEM) in analysing brake
squeal. Firstly, a simplified brake system in form of a pad-on-
disc system is built and a structural vibration analysis is per-
formed using the commercial software tool, ABAQUS 6.7−1.
Then, the results are transferred to the acoustic boundary ele-
ment tool of LMS/Virtual Lab Acoustics, which uses Sysnoise
5.6 as its solver. A brief comparison between a pin-on-disc
system (Oberst & Lai (2009a)Oberst & Lai (2009b)) and the
newly developed pad-on-disc systems is made. Five pad de-
signs were tested motivated by a design of experiment study
(Moore et al. 2008, Oberst et al. 2008). Then the acoustic power
is calculated by means of modal superposition of the complex
modes by synthesising the frequency response for a concen-
trated force centred on the pad., Alternatively, the Rayleigh
integral is taken and, by means of a plane wave approxima-
tion, the radiated sound power in the far-field is calculated.
The sound power contour plots, plotted over frequencies and
friction coefficients, give an overview of the unstable modes in
terms of the brake system’s acoustic response.

DESCRIPTION OF MODELS
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Figure 1: Finite element model of pad-on-disc system

Figure1 gives the simplified brake system. Some of the reasons
for using a simplified brake system are given below.

• Reduced modal density:as the modal density is reduced,
modal coupling is less often observed so that attention
can be focussed on the smaller number of specific cou-
pled unstable modesCote et al.(1998).

• Fewer degrees of freedom:a reduction in brake compo-
nents results in a reduction of elements, hence, degrees
of freedom. This becomes advantageous when calculat-
ing the acoustic response by either the BEM or FEM
time domain models (Oberst & Lai 2009a,b).

• Correlations between methods:correlations between a
time domain and a frequency domain model become
feasible in terms of model validation and computational
resources required (Oberst & Lai(2009a)).

• Accurate surrogate for brake rotor:pure in-plane and
out-of-plane modes of a real disc can be simulated by
means of a generic annular disc (Lee & Singh(2002)).

• Non-symmetric mesh: as the gyroscopic effects are not
very strong at low rotational velocities, a non-symmetric
mesh allows the effects of mode-splitting to be more
pronounced (Ewins(2000)). However, as the modes are
not symmetric, a full boundary element (BE) analysis
must still be carried out in any case. Hence an unsym-
metric mesh is only advantageous.

• Modularity: the system can easily be enlarged by, for in-
stance, changing geometry considering e.g. a hat struc-
ture or by installing more brake components which pro-
vide for different types of couplings to be studied; for
example, introducing the hat leads to in-plane and out-
of-plane coupled disc modes (Lee & Singh(2002)).

• Irregular Frequencies: Due to the problem of irregular
frequencies which is associated with the BEM (Marburg
(2008)), a simplified brake system reduces model com-
plexity and less CHIEF points are required than for real-
life structures.

In this paper, five different pad modifications are considered;
they are inspired by the pad configurations previously analysed
in a design of experiment (DoE) study presented inMoore et al.
(2008) andOberst et al.(2008). Also, the numerical model em-
ployed is based on an annular disc in contact with a pad pre-
viously used (Oberst & Lai 2009a,b), which is closer to a pin-
on-disc system as the pad is made of steel. In this study, the
pad is more realistic, having a lining material and a back plate,
and will be referred to as apad-on-discsystem. However, the
lining material is treated as isotropic, which is not the most ap-
propriate approximation of a real brake pad, and the pressure
is still only applied on one side. The five pad configurations
are depicted in Figure2 in which the leading edge is on the
right-hand side. The mesh details of the numerical model of
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Figure 2: Pad designsI-V . LE & TE stand for leading & trail-
ing edge.

Table 1: Mesh details of models (#EL:=number of elements)

Model EL (Type) # EL (FEM) # EL Pad # EL (BEM)

I C3D8R 26,163 660 10,088
II C3D8R 26,153 650 10,114
III C3D8R 26,113 610 10,098
IV C3D8R/D6 31,355 5760/92 12,272
V C3D8R/D6 31,459 5924/32 12,138

Table 2: Material parameters

Parameter Disc Lining Backplate

E GPa 110 40 210
ν 0.28 0.10 0.30
ρ kg/m3 7800 2500 7200

the simplified brake system incorporating five pad configura-
tions are given in Table1 and2. Compared to thepin-on-disc
setup which has 23989 elements for the FE model, the system‘s
mesh is refined for two reasons: firstly, so that modes up to
7kHzcould be analysed; and secondly, the CEA requires a finer
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mesh for all cases as a result of the incorporation of a lining
material. A linear hexahedral reduced integration elementwas
chosen with hoursglass controll and second order accuracy.A
mesh-convergence study (presented inOberst & Lai(2009a))
has been performed for the pad design (III) and (IV) since it
was assumed from experiements that they performed the worst.
The baseline (I), the single-slot (II) and the double-slot (III)
configurations have identical meshing parameters for the pad.
The pads with diagonal slots (IV and V) have to be meshed
with thebottom-upalgorithm and two different element types
have to be used: aC3D8R linear hexahedral 8−node element
and aC3D6 linear wedge 6−node element (Das 2007). An-
other element option, a hexahedral element with imcompatible
modes capability was not taken, since especially for a higher
amount of elements, the computer running times were up to
74% for the mesh used. The wedge elements were taken to
adapt better to the geometry, their total number remained rather
low. The number of elements for the lining material in pad de-
signs (IV and V) had to be increased by more than 5000 to
obtain a stable convergent solution. However, for all five cases,
the disc and back plate have the same number of elements (hex-
ahedral/wedge), being 24,563/490 for the disc and 150/0 for
the back plate. Here, the wedge elements are adopted in order
to keep the mesh quality relatively high thereby using a mini-
mum number of elements for a non-symmetric mesh. TheBE
mesh consists of onlytria3/quad4 elements. Asmall sliding
formulationwas assumed with the kinematic constraint contact
algorithm and a constant friction coefficient. As the acoustic
model is composed of the matrices based on the mesh around
the vibrating bodies, an envelope is wrapped around the FE
structural mesh to generate the acoustic mesh. Ten elements
per wavelength are used throughout the acoustic study. The
material properties (Young‘s modulus,E, Poisson ratio,ν and
density,ρ) of the disc, lining and backplate are given in Table
2. The fluid properties, ie, the speed of sound and the fluid’s
density have been assigned the default values ofc = 340m/s
andρ f = 1.125kg/m3.

STRUCTURAL ANALYSIS

Complex Eigenvalue Analysis

Based on a study of a pin-on-disc system (Oberst & Lai 2009a),
the pad lining material is changed to be more realistically closer
to a pad-on-disc system. However, it has been found that, com-
pared with the pin-on-disc system, numerical stability is much
harder to achieve and the system does not converge consis-
tently in terms of unstable frequencies (number and coupled
modes). Also, the back plate structure has to be introduced
to provide higher stiffness to the back of the lining material
which, without it, has been found to distort excessively andthe
solution would not converge. To perform a stability analysis for
a brake system, the common approach is to compute the com-
plex eignenvalues. For this purpose, ABAQUS 6.7-2, which
allows for pre-stressed analysis by incorporating non-linear ef-
fects in the CEA approach, was chosen. Firstly, the structure
was pre-stressed and rotated and then the real eigenfrequencies
were extracted. The non-symmetric solver, incorporating non-
symmetric friction effects (stiffness matrix), was applied. The
real-part of a complex eigenvalue represents damping whileits
imaginary part represents frequency. If the real part of a com-
plex eigenvalue is positive, then any perturbation will grow
with time, indicating instablility. By successively increasing
the friction coefficient, bifurcation diagrams could be gener-
ated. Instead of presenting bifurcation diagrams (ie, observing
how modes‘ stability change as the friction coefficient changes)
as inOberst & Lai(2009a). Figure3 depicts stable and unsta-
ble mode pairs in the form of a root locus plot (ie, real-part
(damping) vs imaginary-part (frequency)) for a given friction
coefficient for all 5 pad configurations. The disc modes are
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Figure 3: Real part of complex eigenvalues over frequency for
pad modificationsI-V .
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characterised by(m,n,q, l), wherem, n, q andl are the number
of nodal circles and nodal diameters for out-of-plane motion,
nodal diameters for radial in-plane motion and nodal diameters
for tangential in-plane motion respectively. It is important to
distinguish between pure disc modes, coupled pad-disc modes
and unstablecoupled pad-disc modes. A pure disc mode ex-
ists only when no other structure is in contact with the brake
rotor; otherwise the rotor couples with for instance the pad.
If the real-part of the complex eigenvalues of these modes is
positive, the coupled disc mode is calledunstable. Henceforth,
only the coupled pad-disc modes are considered here, in ac-
cordance withBea & Wickert(2000). However, for the sake of
simplicity, these modes are expressed in terms of the nomen-
clature used for pure disc modes, since the overall disc‘s mode
shape is often found to be dominant. In all five pad designs,
three modes have been identified as unstable: the(0,4,0,0)-
disc mode; the(0,5,0,0)-disc mode, with tangential in-plane
pad motion, and the(0,0,3,0)-star mode, with very strong tan-
gential in-plane motion of the pad. Furthermore, for the two
pads with diagonal slots (IV −V), the mode dominated by the
(0,3,0,0)-disc mode is unstable. A fifth instability occurs at
6.8kHz for the pad designIV corresponding to a(1,2)-disc
mode with an additional in-plane shear component and tangen-
tial pad movement. The letters,i and o, used in Figure3 as
subscripts of the friction coefficientµ, stand forlockingin and
locking out respectively. The numbers following refer to the
number of locking-in/locking-out events; for instance,µi,2 in-
dicates a second transition point after having locked out the
first time.

Selection of Method for Calculation of Forced Vibra-
tion Response

After the CEA, the surface velocities of the structure were gen-
erated. The capability of LMS/VIRTUAL LAB, System Analy-
sis and three methods implemented in ABAQUS 6.7-1 were
tested and the results obtained from the frequency response
functions were compared. In general, three criteria are impor-
tant for the selection of an appropriate method: (i) accuracy, es-
peciallyLMS/VL is not a specialised structural vibration anal-
ysis software compared with ABAQUS; (ii) computational ex-
pense; and (iii) ease of handling because a considerable amount
of calculations has to be performed. A concentrated force
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Figure 4: Driving Point Receptances calculated with ABAQUS
(a) modal (A1), (b) subspace (A2), (c) direct (A3) and (d) LMS
subspace (L ) for µ = 0.05, 0.30 and 0.42 for the pin-on-disc
system (undamped).

of 1000N was applied to the middle node of the pad. In Fig-
ure 4 three methods implemented in ABAQUS are compared
with the subspace method implemented in LMS/VL are com-
pared for the Frequency Response Function (FRF) of the driv-
ing point receptance for a pin-on-disc system with three differ-
ent friction coefficients,µ = 0.05, 0.30 and 0.42. The modal
based forced response (A1) in ABAQUS calculates the lin-
earised response of the system’s steady state due to harmonic
excitation and is based on superposition of the system’s normal
modes. Non-diagonal damping, stiffness and residual modes
are not taken into account. The system is pre-stressed due to(i)
the pressure applied to the brake disc through the pad and (ii)
the disc’s rotation at 1.58Hz. The second method in ABAQUS,
the subspace-based steady-state dynamic analysis (A2) includes
non-symmetric stiffness and damping matrices, hence better
suited to calculate the effects of friction. However, no residual
modes are included and the system is only represented by a
number of complex modes projected onto the subspace . The
calculation of FRF implemented in LMS/VL (L ) works on the
same principle. Usually, this method is suitable, if only weak
non-linearities are present. Friction effects are strongly non-
linear, therefore, this method can only be seen as an approxi-
mation and the direct steady-state analysis (A3) in ABAQUS
should be prefered. This method, based on the calculation of
the system response in terms of physical degrees of freedom,is
more accurate than both the modal based and subspace method.
Although it is the preferred approach to calculate effects of fric-
tion and contact, it is computationally expensive. From Figure
4, it can be seen that there are differences in the driving point
receptance obtained by the various methods. Even with essen-
tially the same method, ie, subspace method, there are some
noticeable differences in the driving point receptance between
ABAQUS and LMS implementations. For a given method, the
influence of the friction coefficient on the driving point recep-
tance is noticeable. In order to highlight the influence of the
friction coefficient for a given method, the normalised differ-
ences in the FRF obtained from Figure4, ie,

∆FRF1 =
FRF|µ=0.3−FRF|µ=0.05

FRF|µ=0.3
(1)

∆FRF2 =
FRF|µ=0.42−FRF|µ=0.30

FRF|µ=0.42
(2)

which are plotted in Figure5(a) (a) for comparisons. It can
be seen that the influence of the friction coefficient is negli-
gible for the modal based method. While there is some in-
fluence of the friction coefficient for the direct (A3) and sub-
space (A2) methods implemented in ABAQUS. It is far less
significant than the results obtained by the subspace method
implemented in LMS. The method provided byLMS allows
for modal coupling and the major contribution to the differ-
ences due to the friction coefficient lies around the frequency
4kHz. The computing time required to do the forced response
calculations with a 2Hz frequency resolution for the various
methods (A1, A2, A3 andL) using a HP xw4600 workstation
with WINDOWS V ISTA 64 BIT operating system and 8GB of
RAM is given in Figure5 (b). It can be seen that while the
direct method (A3) is theoretically the most accurate, the com-
puting time required is almost 4 orders of magnitude of that
for the subspace method (L) implemented in LMS. It is clear
from Figure4 that substantial work has to be done in order to
ascertain which method is most applicable in the calculating
the forced response of a pin-on-disc system. Considering the
influence of friction coefficient and the computing resources
required, the subspace method inLMS/VL has been selected
for a preliminary investigation of acoustic power calculations.
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ACOUSTIC ANALYSIS

The acoustic analysis was performed using acoustic power cal-
culations based on a plane wave approximation in the far field
taking into account of the impedance of the acoustic medium.
This is acceptable because in the the model investigated, the
bulk of the fluid is moved by the plane surfaces of the disc
(Herrin et al.(2003)). Hence, theRayleighintegral could be
used to calculate the acoustic power II over an imaginary sur-
face,S in the far-field as follows.

Π =
∫

S
IndS=

∫
S

1
2

ℜ{pv∗n}dS (3)

whereIn is the sound intensity,p the sound pressure andv∗n the
transposed complex normal velocity vector. The impedance is
that of the acoustic medium, hence,zc = p

vn
= ρc→ vn = p

ρc.

Comparison pin-on-disc/ pad-on-disc

As an introduction, comparisons of the sound power calcu-
lated by both the direct BEM and using plane wave approx-
imation in LMS/VL at µ = 0.3 of the pin-on-disc system as
used inOberst & Lai(2009b) with the pad-on-disc simplified
brake system are depicted in Figure6. A viscous damping
was applied to the mode set of the brake system to account
for internal structural damping effects for two different val-
ues:ζ = 0.02 andζ = 0.002. This damping is frequency de-
pendent and proportional to the velocity. The higher damp-
ing value is chosen as an upper bound for some pad modes,
which are strongly damped, while the lower damping value ac-
counts for the average value of modal damping values taken
from (Papinniemi 2007). It should be noted that in calculating
the forced response function using LMS/VL, modal informa-
tion was imported from ABAQUS and the modal frequencies
remain independent of the viscous damping introduced. This
was done in order to flatten the forced response functions and
to study the effect of this kind of damping. As both the pin-on-
disc and the pad-on-disc systems employ discs of exactly the
same specifications (Figure1), the main difference is due to
the pad which, despite having the same shape and dimensions,
is not a single steel pad as in the pin-on-disc model but is a pad
of lining material with a backplate in the pad-on-disc model. It
can be seen from Figure6 that the sound power level for the
pad-on-disc system is at least 20dB below that of the pin-on-
disc system. This is expected because of the strong damping
effect provided by the pad‘s lining material and the backplate
in the pad-on-disc system. For a given system, it can also be
seen that there is very little difference between the sound power
calculated by the Rayleigh integral using the plane wave ap-
proximation and the direct exterior BEM and the difference is
within 2.5% for the frequency range of interest from 3.8kHzto
6kHz. This result justifies the use of the Rayleigh Integral with
the plane wave simplification for the calculation of the acoustic
power because the direct BEM would have taken around 103

times longer per frequency step to do the calculations for the a
BE matrix of≈ 12500 dof‘s. In Figure7, theacoustic power
as a function of both frequencies and friction coefficient for a
slightly damped structure with a viscous damping of 0.2% for
the pin-on-disc system is depicted as a 3D plot. As shown in
Figure7, it is not easy to examine the details on how the acous-
tic power changes with frequencies and friction coefficient. It
is, therefore, preferable to use contour plots of acoustic power.
Contours of the acoustic power over both the friction coeffi-
cient and frequencies for the pin-on-disc system and pad-on-
disc system (I) with a viscous damping of 2% are compared
in (Figure8). Clearly, a distinguished peak near 4kHz is dis-
cernible in each case, corresponding to the bifurcation point
when two neighbouring modes couple together and get unsta-
ble. It is apparent that the pad-on-disc system is subjectedto
mode-coupling instability at a lower value of the friction co-
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efficient (≈ 0.1 vs 0.28) than for the pin-on-disc system. This
seems plausible because the softer and more compressible lin-
ing material of the pad would attach and couple better to the
disc than would a steel pin. Further, the mode at around 2.5
kHz for the pad-on-dsic system radiates quite strongly, as can
be seen in Figure8 (b), relative to the unstable mode of 4kHz,
even though this mode at around 2.5kHz has not been iden-
tified by CEA as unstable. Also, for the pad-on-disc system,
there is some change in the pattern of the contours at a friction
coefficient ofµ = 0.58.

Acoustic Power Calculations for various Pad Designs

In comparing the variation of the acoustic power with frequen-
cies and the friction coefficient for the 5 pad designs in the pad-
on-disc system, contour plots for two viscous damping values
of 0.2% and 2% are depicted in (Figure9 and10) respectively.
It should be noted that only the frequency range of 3.8−7.0
kHz, instead of 1−7kHz, is considered, primarily (i) to reduce
the computational time required and (ii) to focus on the unsta-
ble vibration modes present in all 5 cases as shown in Figure3.
As a result, the influence of the unstable modes around 2.5kHz
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for the two pad designs (IV and V) is not considered. In Fig-
ure 9, the solid vertical lines (magenta) indicate theµ−value
for transition to instability. This value is sometimes known the
critical coefficient of friction, at which the system bifurcates,
and the two stable/unstable modes are locked together vibrat-
ing with the same frequency. The dashed lines (dark green)
indicate the locking-out behaviour of a previously locked-in
mode. The contour plots of the pad designsI − III , look very
similar. One significant difference can be seen in Figure9 (c)
where the ridge at 4050Hz maintains its high value over the
whole range ofµ whereas, in contour plots (a) and (b), the

sound power diminishes in the interval betweenµ = 0.1 and
µ = 0.2. However, the acoustic power contour plots in Figure
9(d) and (e) for the the two pad designs with diagonal slots
(IV and V) look quite different from those in Figure9(a)-(c)
for designs (I, II and III). It appears that pad designIV shows
the worst performance with nine peaks. DesignV has lower
overall sound power levels and, also, the number of peaks and
ridges with high sound power levels is less than for designIV
(Figure9 (d)). It is interesting that, in all cases, the predictions
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performed using the CEA do not entirely correspond to the
acoustic power contour plots, especially at frequencies with
high sound power values. For example, in Figure9(a), three fre-
quencies, at around 4050, 5600 and 5880Hz, show the highest
sound power levels whereas, the frequencies predicted by CEA
to be unstable occur around 4050, 5880 and 6500Hz (Figure
3(a)) for the baseline pad design (I). At around 6500Hz (unsta-
ble coupled(0,0,3,0)-star mode), the brake system does not
appear to radiate very high sound power and at around 5600Hz,
the system emits relatively high energy over the whole range
of µ. This strong radiating mode is a(1,2,0,0)-disc mode
coupled with a pad motion in, predominantly, the in-plane tan-
gential direction due to the negative travelling wave. The split
mode of the positive travelling wave, located around 5640Hz,
has a predominantly in-plane radial motion and does not cor-
respond to the ridge with high sound power. In the case of the
single slot (II) and double slotted pad (III), the behvaiouris
similar to that for pad design (I). The unstable(1,2,0,0)-disc
mode, which is coupled with a pad moving tangentially to the
circumferential circles of the annular disc, dominates theradi-
ated acoustic power(Figure9(b)-(c)).

From Figure10, it can be seen that damping the acoustic modes
viscously by 2% could be advantageous, as accentuated peaks
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Figure 11: (color online) Acoustic power averaged over fric-
tion coefficients for slightly damped case(a) and stronger
damped case(c). Average friction coefficient slightly damped
(b) and stronger damped modes (d)

are revealed which, previously, are difficult to distinguish from
the ridges nearby in Figure 9. The applied damping does not in-
fluence the frequency and the system responds rather linearly
to this effectLMS Virtual Lab R8A, help manual(n.d.). In Fig-
ure10 (a), the baseline model (I) high radiated sound power at
three frequencies: around 4kHz, 5.6kHzand 5.8kHz. However,
the mode at≈ 4kHzpredicted by the CEA to be unstable, does
not show an exposed and dominant ridge in acoustic power.
Still, at a friction coefficient ofµ = 0.44, a local maximum
could be found. The unstable mode at around 4kHzhas a peak
at the bifurcation point ofµ = 0.1 which is indicated by the
solid vertical line (pink). Asµ increases beyond 0.1, the sound
power decreases and then peaks again at aroundµ = 0.45. The
sound power of the second predicted unstable mode, at around
5.8kHz, is maximum only in the region around the predicted
bifurcation point atµ = 0.21 . However, it is interesting to
note that for this unstable mode around 4 kHz, there are two lo-
cal adjacent peaks and as the friction coefficient increases, the
sound power emitted at this frequency attenuates. The pad de-
signsII + III behave very similarly, except that the mode peak-
ing at 5.83kHz is not as sharp as for pad design I. Pad design
III has a very sharp peak at the bifurcation point (µ = 0.12)
of the(0,4,0,0)-disc mode with frequency 4061Hz compared
to pad designII . In terms of the(1,2,0,0)−mode, which is
quite dominant in the slightly damped case, the graphs in Fig-
ure 10a)-c) show a significantly lower sound power level for
the more strongly damped case at this frequency. However, a
ridge of higher sound power remains in all pad designs (Figure
10(a)-(c). In contrast, pad designsIV −V(Figure2) differ sig-
nificantly; in particular, pad designIV (slot inclined towards
leading edge) shows 6− 7 very high peaks of sound power.
The (0,5,0,0) mode at 5880Hz seems to be much more dom-
inant than in the pad designs (I-III). Also, at the friction co-
efficient aroundµ = 0.57, the(1,2,0,0)-disc mode at around
5.6kHz has a very sharp peak, although it has not been pre-
dicted by CEA to be unstable. It is interesting that the mode
(0,3,0,1), predicted to be unstable at around 6.8kHz, does
not show high acoustic power within the range of friction co-
efficients between 0.01 and 0.6. Astonishingly, this mode be-
comes visible as it is the global maximum in the acoustic power
contour plot for pad designV (Figure 10 (e)) although it is
not predicted to be unstable. Intriguing is also that this pad
design (V) shows considerable improvement in lower overall
radiated sound power over the pad design (IV) of sub-figure
10 (d). The average radiated acoustic power per frequency and
overall average (bar diagrams) for five pad designs is shown in
Figure11(d) (a)-(d) for zeta= 0.2% and 2.0%. In subfigures
(a) and (c) the acoustic power was averaged over the 36 fric-

tion coefficients, then in (b) and (d) these values were again
averaged but over the amount of frequency steps which where
630. The ranks in performance (lower radiated acoustic power
the better) are given above the bars. It is obvious that these
rankings in terms of average performance are not influenced
by the damping. It is possible to extract the best-performing
pad which, in both cases, is the one with the single slot (II),
and the worst-performing pad, is the one with a diagonal slot
inclined towards the leading edge (IV).

Radiation Efficiency of the Pin-on-Disc System

Contour plot of the radiation efficiency of the pin-on-disc sys-
tem as a function of frequencies and the friction coefficientis
shown in Figure12. It is interesting to see, that the structural
vibration modes below the 4kHzare very efficient in radiating
sound, rather than the unstable vibration modes at 4kHz and
5.88kHz. Also, two local maxima appear, one at a friction co-
efficient of aroundµ = 0.42 and 5,3kHz and a second from
µ = 0.5 to µ = 0.6 at around 4,6kHz but they do not corre-
spond to the unstable vibration modes. However, although it
is known, that out-of-plane modes with less nodal diameters
radiate better (Cote et al.(1998)) the two maxima could pose
a problem, especially the one close the the unstable(0,5,0,0)-
mode at around 5.8kHz. Anyway, the range below and at 4kHz
gives over the whole range of friction coefficients high radia-
tion efficiency, hence for a real brake system the problem scope
would lie on the unstable(0,4,0,0) mode.
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CONCLUSION

In this study, a previously analysed equivalent pin-on-disc sys-
tem comprising an annular disc has been extended to a pad-
on-disc system by replacing the steel pad with a pad of the
same thickness made up of a lining material and a backplate..
The effect of of this pad modification is twofold: (a) in general,
the overall acoustic power amplitude is reduced; and (b) the
coupling has been enhanced, resulting in a higher number of
unstable vibration modes and the bifurcations points shifted
to lower µ-values. The effect of 5 different pad designs on
brake squeal propensity is studied numerically by identifying
unstable vibration modes using complex eigenvalue analysis
(CEA) in ABAQUS and calculating the acoustic power of the
simplified brake system using LMS/VL subspace method and
Rayleigh Integral.. Results of CEA and acoustic power calcula-
tions show that not all the peaks in the acoustic power contour
plots correspond to unstable vibration modes, similar to the
preliminary findings of (Oberst & Lai(2009a)) for the pin-on-
disc system. It has been shown that by calculating the average
sound power for each pad design, the performance of each pad
in terms of brake squeal propensity can be ranked with the di-
agonal slot (IV) being the worst and the single vertical slot(II)
being the best. This is coincidentally the finding of an indus-
trial testing of a full brake system with similar pad designs.
By considering the complex eigenvalue value analysis, acous-
tic power calculations and radiation efficiencies together, it ap-
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pears that the unstable(0,4,0,0)-coupled disc mode is more
likely to squeal than the second unstable mode(0,5,0,0) at
around 5.8kHz. These results indicate the potential of predict-
ing brake squeal propensity by including acoustic calculations
in addition to traditional complex eigenvalue analysis of unsta-
ble vibration modes.
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