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Abstract 
 

Sonic crystals are periodic arrangements of sound scatterers in a homogeneous fluid medium, where 

there exists a large impedance mismatch between the scatterers and fluid. Sonic crystals are receiving 

recent interest as noise barriers for reduction of road traffic noise. The use of a sonic crystal noise 

barrier is particularly attractive for difficult-to-address low frequency traffic noise sources. In addition 

to the potential to design sonic crystal barriers to target specific frequency ranges, another benefit in 

their use is that they allow the free flow of air, thus reducing the effect of wind loading on barriers. 

The acoustic performance of sonic crystals can be enhanced by replacing the scatterers with locally 

resonant elements. This paper examines the acoustic performance of a periodic array of rigid 

perforated cylindrical shells as a potential noise barrier. A parametric study to investigate the effect of 

the number and size of the perforations on the sonic crystal barrier insertion loss is presented.  

1. Introduction 

Sonic crystals are periodic arrays of scatterers that are currently being investigated for use as noise 

barriers using either vertical or horizontal cylinders to represent the scatterers [1-5]. Compared to 

traditional noise barriers, sonic crystals allow air to pass freely through the structure, thus reducing the 

effect of wind loading on barriers. Furthermore, a sonic crystal barrier may use less material than 

traditional noise barriers due to a reduction in filling fraction (volume occupied by the scattering 

material with respect to the total volume). A notable feature of sonic crystals is the occurrence of high 

levels of noise attenuation in certain frequency ranges known as band gaps. Varying the distance 

between adjacent scatterers and increasing the filling fraction are two approaches to improve the 

acoustic performance of the sonic crystal array.  

The use of locally resonant scatterers has gained recent interest in the study of sonic crystals 

[1,2,6,7]. The result is the generation of locally resonant band gaps around the resonator natural 

frequency in addition to the band gap due to the overall periodicity of the sonic crystal array. Chalmers 

et al. [6] showed that the use of a C-shaped resonator is able to generate two bandgaps; one band gap 

due to the periodic arrangement of the scatterers and a second band gap attributed to resonance of the 

air inside the resonators. The band gap can be broadened using resonators of varying sizes. Elford et al. 

[7] considered multi-resonant scatterers for which C-shaped resonators of increasing size were 

arranged concentrically around each other in a Russian doll, or Matryoshka, format. The local 

resonance of each slotted resonator created transmission loss that was dependent only on the 

dimensions of the resonator cavity and unrelated to the periodicity of the sonic crystal. 
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In this work, the acoustic performance of a sonic crystal noise barrier using vertical cylindrical 

shells of finite height is numerically investigated. The insertion loss of the sonic crystal barrier 

obtained using either uniform or perforated cylindrical shell scatterers are compared. The effects of the 

number and size of the perforations on the barrier insertion loss is examined. 

2. Numerical Model 

A finite element (FE) model of the noise barrier was developed using COMSOL Multiphysics (v4.3b) 

[8]. The Helmholtz wave equation is solved for the acoustic pressure 𝑝 at each frequency and is given 

by 
 

∆𝑝(𝐱) + 𝑘2𝑝(𝐱) = 0                                                                                                     (1) 
 

where ∆ is the Laplacian operator, 𝑘 is the acoustic wavenumber and 𝐱 is a point in the acoustic 

domain. The acoustic pressure in a discretised domain is given by 

 

𝑝(𝐱) = ∑ Φ𝑖(𝐱)

𝑁

𝑖=1

𝑝𝑖                                                                                                                                                 (2) 

 

where 𝑝𝑖 corresponds to the discrete acoustic pressure at point 𝐱. Φ𝑖(𝐱) are basis functions [9]. 

Substituting equation (2) into equation (1), applying non-reflecting boundary conditions and 

rearranging the resulting equations into one matrix equation yields [9] 

 

(𝐊 − 𝑗𝑘𝐂 − 𝑘2𝐌)𝐩 = 𝐩𝒊                                                                                                                                        (3) 
 

where 𝐊, 𝐂 and 𝐌 are the stiffness, damping and mass matrices, respectively, and 𝑗 = √−1 is the 

imaginary number. The matrices 𝐊 and 𝐌 result directly from the integration of the basis functions 

while the matrix 𝐂 represents the effects of the non-reflecting boundary conditions. The excitation 

vector 𝐩𝒊 represents the incident pressure field and the vector p represents the acoustic pressure at the 

nodal locations in the acoustic domain.  

3. Uniform and Perforated Cylindrical Shells 

A numerical model of a periodic array of acoustically rigid uniform cylindrical shells was developed 

as follows. Three cylindrical shell scatterers in the y-direction were considered, as shown in Figure 1. 

A periodic boundary condition was applied in the x-direction of the domain to reduce the 

computational cost required to solve the finite element model, thus extending the length of the barrier 

to infinity in the positive and negative x-directions. A radiation boundary condition with an incident 

plane wave source of 1 Pa was applied to the left boundary. The plane wave source was located at a 

distance of 1 m from the mid-plane of the first row of cylinders. The receiver was located on the right 

face of the domain boundary in the barrier shadow zone. A rigid boundary condition was applied on 

the ground as well as the top surface of the domain, thereby neglecting diffraction over the top edge of 

the scatterers. The uniform cylindrical shells were then replaced with perforated cylindrical shells 

shown in Figure 2. The cylindrical shell scatterers have dimensions of height of ℎ=3m, radius of the 

internal cylinder of 𝑟1=0.18m, radius of the external cylinder of 𝑟2=0.2m and cylindrical shell 

thickness of 20mm.  

The lattice constant 𝑎 is defined as the distance between the centres of adjacent scatterers and the 

filling fraction is defined as the ratio of the volume occupied by the scattering material with respect to 

the total volume of the sonic crystal. The centre frequency 𝑓𝑐  of the band gap produced by the periodic 

array can be approximately predicted by Bragg’s law and is given by 
 

𝑓𝑐 =
𝑛𝑐

2𝑎
,      𝑛 = 1, 2, 3, …                                                                                                                                         (4) 
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where 𝑐 is the speed of sound in the host medium which in this case is air. For the dimensions of the 

cylindrical shell scatterers considered in this work, the lattice constant is 𝑎 = 0.6 m and the filling 

fraction is 0.35. 

Sound attenuation by the sonic crystal noise barrier is expressed in terms of insertion loss (IL) as 

follows  

 

IL = SPLwithout SC − SPLwith SC                                                                                (5) 

 

where SPLwithout SC and SPLwith SC are the sound pressure levels for the same receiver position 

without and with the noise barrier, respectively. 
 

  
Figure 1. Configuration of the sonic crystal barrier showing the boundary conditions 

 

  
 

Figure 2. Schematic diagram of the rigid perforated cylindrical shells 
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4. Results 

The insertion loss for a sonic crystal barrier using either uniform or perforated rigid cylindrical shells 

is presented in Figure 3. The perforated cylindrical shell scatterer has 8 holes around its circumference 

and 16 holes along its length, corresponding to a total of 128 holes. The radius of the holes is 20 mm. 

Using uniform cylindrical shell scatterers, a broad band gap is generated, attributed to destructive 

interference between reflected and scattered waves within the periodic array of cylinders. Peak 

insertion loss occurs around 270 Hz. The centre frequency of the band gap is also predicted using 

equation (4) for the first Bragg band gap, corresponding to 283 Hz for 𝑐 = 340 m/s and lattice 

constant 𝑎 = 0.6 m. For the sonic crystal barrier using perforated cylindrical shells, a narrow band 

peak in insertion loss is generated in addition to the broad band gap due to Bragg scattering. The 

frequency at which peak insertion loss occurs due to the locally resonant scatterers is independent of 

the periodicity of the sonic crystal array and instead can be approximately calculated by the natural 

frequency of a Helmholtz resonator which is given by  

 

𝑓HR =
𝑐

2𝜋
√

𝑛𝑆

𝑙′𝑉
                                                                                                                                                         (6) 

 

In equation (6), 𝑛 is the total number of holes per cylindrical shell scatterer, 𝑆 is the cross-sectional 

area of each hole and 𝑙′ is the effective length of the neck of each hole. 𝑉 is the volume of air in the 

cylindrical shell scatterer and is equal to 𝜋𝑟1
2ℎ, where 𝑟1 is the radius of the internal cylinder and ℎ is 

the cylinder height. The effective length 𝑙′ is used to account for the fact that some extra volume of air 

around the neck moves with the air inside the neck and is given by 

 

𝑙′ = 𝑙𝑛 + 𝐶𝑟ℎ                                                                                                                                                             (7) 
 

𝑙𝑛 is the actual length of the neck of each hole, 𝑟ℎ is the radius of the holes and 𝐶 is an empirically 

determined correction factor which is dependent on the geometry of the resonator. Here, the correction 

factor was found to be a linear function of the total surface area of the holes and is given by 

 

𝐶 = −4.59𝑛𝑆 + 1.42                                                                                                                                              (8) 
 

where 𝑆 = 𝜋𝑟ℎ
2 and the coefficients –4.59 and 1.42 are attributed to the size and number of the holes. 

According to equation (6), a lower resonant frequency can be achieved by increasing the internal 

volume of air in the cylindrical shell, increasing the length of the neck by increasing the thickness of 

the cylinder, or reducing the total surface area of the holes by either reducing the number of holes or 

reducing the radius of the holes. In Figure 3, the global increase in insertion loss of the Bragg band gap 

using perforated cylindrical shells is attributed to the Helmholtz resonator frequency associated with 

the narrow band peak insertion loss occurring within the frequency band gap due to the Bragg 

scattering. 

The effect of hole radius of the perforated cylindrical shells on the barrier insertion loss is 

presented in Figure 4. Each perforated cylindrical shell scatterer has 8 holes around its circumference 

and 16 holes along its length. Decreasing the hole radius from 20 mm to 10 mm results in a decrease in 

the frequency at which the narrow band peak insertion loss occurs. As per equation (6), decreasing the 

hole radius results in a decrease in the total cross sectional area of the holes and hence a decrease in the 

resonant frequency. Since the resonant frequency due to the perforations no longer occurs within the 

band gap due to the Bragg scattering, the insertion loss due to the periodicity of the cylinders is now 

mostly unaffected by the locally resonant scatterers. When the hole radius is significantly increased to 

40 mm, the perforated cylindrical shells no longer act as a sonic crystal, attributed to the fact that air 

can easily pass through the holes.  
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Figure 3. Insertion loss for a sonic crystal barrier using uniform or perforated rigid cylindrical shells 

 

 

 
 

Figure 4. Insertion loss for a sonic crystal barrier using uniform cylindrical shells or perforated 

cylindrical shells with varying hole radius 

 

 

Figure 5 illustrates the effect of varying the number of holes around the circumference of the 

perforated cylindrical shells on the insertion loss. The location of each resonant frequency is dependent 

on the number and size of the holes and independent of the periodic arrangement of the scatterers. 

Decreasing the number of holes results in a shift of peak insertion loss with higher attenuation to lower 

frequencies. This is attributed to the fact that the total surface area occupied by the holes has 

decreased. Increasing the number of holes around the circumference results in higher insertion loss at 

frequencies within the Bragg band gap due to the resonant frequency of the locally resonant scatterers 

occurring within the frequency band gap due to Bragg scattering. 

The effect of the total number of holes on the insertion loss is now examined. In Figure 6, results 

are presented for which the number of holes around the circumference of the perforated cylindrical 

shell is halved (4 holes around the circumference, 16 holes along the length resulting in a total of 64 

holes), or the number of holes along the length is halved (8 holes around the circumference, 8 holes 

along the length resulting in a total of 64 holes). By halving the number of holes either along the length 

or around the circumference, the resonant peak is shifted to lower frequencies due to a reduction in the 

total surface area occupied by the holes. Since the total surface area occupied by the holes is the same 

for both cases at which the number of holes is reduced, the frequency at which peak insertion loss 

occurs is unaffected. 
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Figure 5. Insertion loss for a sonic crystal barrier using uniform cylindrical shells or perforated 

cylindrical shells with varying number of holes around the circumference 
 

 
 

Figure 6. Insertion loss for a sonic crystal barrier using uniform cylindrical shells or perforated 

cylindrical shells with varying number of holes 

 

 
 

Figure 7. Insertion loss for a rigid perforated cylindrical shell sonic crystal barrier with varying number 

of holes around the circumference 
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The effect of rotating the location of the holes around the circumference of the perforated cylindrical 

shells is shown in Figure 7, using 4 holes around the circumference and 16 holes along the length such 

that the peak insertion loss at the Helmholtz resonator frequency is below the Bragg band gap. The 

location of the holes is then rotated by 45
o
 around the circumference. The results in this figure confirm 

those in Figure 6 in that the location of the holes does not affect the resonant frequency due to the 

perforations.  

5. Summary 

The acoustic performance of sonic crystal noise barriers comprising of uniform or perforated rigid 

cylindrical shells has been investigated. A Bragg band gap was generated due to the periodic 

arrangement of the cylindrical shell scatterers, dependent on the distance between the scatterers and 

the volume occupied by the scatterers. The local resonance of the perforated cylindrical shell scatterers 

created an additional peak in insertion loss, approximately predicted by the resonant frequency of a 

Helmholtz resonator. The location of the resonant frequency was shown to be dependent on the 

number and size of the holes and independent on the location of the holes. When the resonant 

frequency due to the perforations occurred within the Bragg band gap, a significant increase in 

insertion loss across the band gap was found to occur.  
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