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Abstract 

In order to transmit thrust effectively a marine propulsion system is made up of mechanically stiff 

components. Consequently, unsteady propeller loads are also effectively transmitted to the hull 

structure. At low speeds, these result in tonal oscillations at the blade-passing frequency and its 

harmonics. At high speeds, broadband vibration is generated by cavitation and turbulence ingestion. 

The relative magnitudes of the axial, tangential and radial unsteady forces acting on the propeller are 

dependent on the non-uniform hull wake and propeller design. Much of the previous research has 

focussed on studying the effect of these components independently. This paper theoretically 

investigates the three-dimensional vibrational behaviour of the propulsion system to gain insight into 

the relative importance of the different excitation mechanisms and transmission paths. The propeller 

blade dynamics are included by considering an equivalent beam. This work provides the foundations 

for further efforts, which will investigate the vibration attenuation through the propulsion system of 

marine vessels. 

1. Introduction   

Marine vessels can suffer from large levels of vibration and radiated noise that negatively influence 

passenger comfort, crew fatigue and marine wildlife. The propeller is an important source of both 

broadband and tonal noise. The tonal components, which are at the blade-passing frequency (BPF) and 

its harmonics, are associated with the propeller rotating through a non-uniform wake generated by the 

hull. Turbulence ingestion and cavitation generate the broadband noise and vibration which is most 

problematic at higher speeds [1].  

Although mathematical modelling of vibration transmission through marine propulsion systems 

has been undertaken in the past [2-8], most publicly available studies have focused on reducing the 

axial component of vibration. Dylejko et al. for example, [3-10] developed a transmission matrix 

model to investigate the attenuation of vibration transmission through the propulsion system using a 

resonance changer. Although axial vibration transmission is important, transverse vibration is also of 

concern [1,12] and should be included in a full analysis. The propeller is also often simplified by 

considering an equivalent rigid mass. This simplification ignores the propeller flexure and resulting 

blade resonances [1, 11-13]. Other complicating factors which tend to be neglected include non-

mailto:andrew.youssef@research.uwa.edu.au
mailto:andrew.guzzomi@uwa.edu.au
mailto:jie.pan@uwa.edu.au
mailto:paul.dylejko@defence.gov.au


 

2 

linearity and coupling between the different degrees-of-freedom. It should also be acknowledged that 

the lack of publically available experimental data makes validating these theoretical models difficult. 

The force produced by a marine propeller is not purely axial, but contains components in other 

directions due to drag and uneven loading. In this study, the immittance method is used to predict the 

three-dimensional vibration of a candidate marine propulsion system, which consists of a propeller, 

shaft, journal bearing and thrust bearing. The influence of the propeller compliance is evaluated by 

considering both a flexible and rigid propeller and the results discussed. The flexible propeller blade is 

modelled as a cantilever beam coupled to the end of the propulsion shaft.  

2. Mathematical Model 

The mathematical model is developed using the immittance method that allows for separating a 

complex system, such as the propulsion system, into smaller modular systems that are easier to define. 

A diagram of the system is shown in Figure 1(a). The system is made up of the propeller, two shaft 

elements, a journal bearing and a thrust bearing. A schematic of the simplified system used in previous 

studies for axial transmission (see Dylejko [3]) is shown in Figure 1(b). The proposed model is 

represented by the schematic in Figure 1(c). 

 

 

Figure 1. Top: (a) Diagram of system. Middle: (b) Schematic of propeller shafting system of previous 

studies. Bottom: (c) Schematic of propeller shafting system in this study and its coordinate system 

 

The global coordinate system is defined with x in the lateral direction, y in the vertical direction 

and the z acting in the axial direction of the shaft. The translational velocities, in the direction 

designated by the subscript, are defined as  𝑢̇𝑥 , 𝑢̇𝑦, 𝑢̇𝑧 and the rotational velocities are described by 

𝜌𝑠 , 𝐴𝑠, 𝐸𝑠,𝐺𝑠 
Propeller 

Shaft 
Thrust Bearing  

𝑚𝑝 𝑚𝑡𝑏 

𝑙𝑠1 𝑐𝑡𝑏 

𝑘𝑡𝑏 

1 2 

(b) 

Propeller Journal Bearing  Thrust Bearing  

Effective 

Force  

(a) 

𝑘𝑗𝑏  𝑐𝑗𝑏 

𝜌𝑝, 𝐴𝑝, 𝐸𝑝,𝐺𝑝 

𝜌𝑠 , 𝐴𝑠, 𝐸𝑠,𝐺𝑠 𝜌𝑠 , 𝐴𝑠, 𝐸𝑠,𝐺𝑠 

Propeller Shaft Journal Bearing Shaft Thrust Bearing  

𝑚𝑡𝑏 

𝑙𝑝 

𝑙𝑠1 𝑙𝑠2 
𝑐𝑗𝑏 𝑘𝑗𝑏  

𝑐𝑡𝑏 

𝑘𝑡𝑏 

𝑥 

𝑧 
𝑦 

2 

𝑚𝑗𝑏

3

  
4 

1 

(c) 

𝑘𝑗𝑏  

 
𝑐𝑗𝑏  𝑐𝑡𝑏 

𝑘𝑡𝑏 



 

3 

 𝜃̇𝑥, 𝜃̇𝑦  and 𝜃̇𝑧. The same coordinate system is used for the individual elements. The following 

simplifications and assumptions are made:  

1. Euler–Bernoulli beam theory is used to model beam elements. 

2. The profile of the propeller can be represented by a rectangular cross section.   

3. Linear stiffness and damping coefficients are used to represent the bearings.  

4. The global coordinate system rotates with the shaft.  

5. The hull and foundation have a sufficiently high impedance such that they can be treated as 

rigid.  

6. The rotational resistance in the bearings is ignored. 

This study examines the low frequency behaviour of the propulsion system where the axial wavelength 

is much larger than the radius of the shaft. For this reason, the authors believe that Euler-Bernoulli 

beam theory provides a reasonable approximation. It is acknowledged, however, that at higher 

frequencies, shear and rotary effects are important and must be considered. Although the vibratory 

response of a propeller blade will be different to that of a uniform beam, this simplification allows for 

an easy assessment of the importance of the propeller flexibility on the propeller/shafting interaction. 

Also, it is known that the bearing oil film stiffness is highly non-linear under realistic propeller loads, 

linear dynamic characteristics are a reasonable approximation for a specific operating condition. The 

authors believe that the simplifications made in this work are justified in the context that this 

investigation is primarily concerned with broadly evaluating the importance of propeller compliance 

on vibration transmission through the propulsion system. 

The subscripts 𝑝, 𝑠, 𝑗𝑏 and 𝑡𝑏 denote the propeller, shaft, journal bearing and thrust bearing 

respectively. 𝑙 is the length, 𝜌 is the density, 𝐴 is the cross sectional area, 𝐸 is the Young’s Modulus, 𝐺 

is the bulk modulus, m is the mass of the element, c is the damping and k is the stiffness of the element 

respectively. Locations 1, 2, 3 and 4 are the terminals for each element. The parameters used in this 

study are shown in Table 1. Although some parameters are taken from Dylejko’s study [3], other 

parameters are assumed. The system impedance matrix 𝐙𝐬𝐲𝐬 can be assembled by using continuity and 

equilibrium conditions across the terminals between the elements. The system impedance matrix is 

given by  

 

𝐙𝐬𝐲𝐬 =

[
 
 
 
𝑍𝑝11 𝑍𝑝12 0 0

𝑍𝑝21 𝑍𝑝22 + 𝑍𝑠22 𝑍𝑠23 0

0 𝑍𝑠32 𝑍𝑠33 + 𝑍𝑗𝑏33 + 𝑍𝑠33 𝑍𝑠34

0 0 𝑍𝑠43 𝑍𝑠44 + 𝑍𝑡𝑏]
 
 
 

 (1) 

 

The subscripts 11, 12, 21 and 22 represent either, the drive point impedance, or, the transfer 

impedance. The individual elements that make up the 𝐙𝐬𝐲𝐬 matrix are six-by-six matrices that represent 

each degree of freedom at terminals 1 to 4 and are discussed in detail later. The state and force vectors 

for each terminal are  

 

 𝐯𝐢
𝑇 = [𝑢̇𝑥 𝑢̇𝑦 𝑢̇𝑧 𝜃̇𝑥 𝜃̇𝑦 𝜃̇𝑧] 

 

 𝐅𝐢
𝐓 = [𝐹𝑥 𝐹𝑦 𝐹𝑧 𝐻𝑥 𝐻𝑦 𝐻𝑧] 

(2) 

 

where 𝐹 and 𝐻 are the forces and moments in the directions corresponding to the subscript, and 𝑖 
denotes the terminal number. The relationship between the force and the velocity using the impedance 

of the system is given by 

 

𝐅 = 𝐙𝐬𝐲𝐬𝐯 (3) 
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where 𝐅 is the force vector containing the forces at terminals 1, 2, 3 and 4, 𝐯 is the velocity vector  

containing the velocities at terminals 1, 2, 3 and 4. 

 

Table 1. Table of model constants 
 

Parameter Value Source  Parameter Value Source 

𝑚𝑝 1755 kg [2] 𝐴s 0.0707 m
2
 This study 

𝐼𝑝𝑥𝑥 1258 kg·m
2
 This study 𝐼𝑠𝑧𝑧 0.000795 m

4
 This study 

𝐼𝑝𝑦𝑦 1258 kg·m
2
 This study 𝐼𝑠𝑥𝑥 = 𝐼𝑠𝑦𝑦 0.000398 m

4
 This study 

𝐼𝑝𝑧𝑧 2450 kg·m
2
 This study 𝑙𝑠1 = 𝑙𝑠2 5.25 m [2] 

𝑙𝑝 2 m This study 𝑐𝑗 300 tonnes/s [2] 

𝐴𝑝 0.1125 m
2
 This study 𝑘𝑗 200 kN/m [2] 

𝐼𝑝𝑧𝑧(Vertical Blade) 0.0013 m
4
 This study 𝑚𝑡 200 kg [2] 

𝐼𝑝𝑥𝑥 (Vertical Blade) 0.000843 m
4
 This study 𝑐𝑡 300 tonnes/s [2] 

𝐼𝑝𝑦𝑦(Vertical Blade) 0.0022 m
4
 This study 𝑘𝑡 20000 MN/m [2] 

𝐸𝑠 = 𝐸𝑝 200 GPa [2] 𝐼𝑡𝑥𝑥 13 kg·m
2
 This study 

𝐺s = 𝐺𝑝 79.3 GPa [2] 𝐼𝑡𝑦𝑦 13 kg·m
2
 This study 

𝜌s = 𝜌𝑝 7800 kg/m
3
 [2] 𝐼𝑡𝑧𝑧 25 kg·m

2
 This study 

 

The propeller is modelled as either a lumped mass or as a continuous beam. The beam model is 

described by the same receptance element used by Bishop and Johnson [14], which is based on Euler–

Bernoulli beam theory where shear deformation and rotary effects are ignored. This element is a 

continuous 3D beam that considers transverse, longitudinal and torsional motion. It should be noted 

that the propeller blade is modelled as a continuous beam of rectangular cross section that is 

unchanged along the length of the beam. The aerofoil cross section, the varying chord length and the 

swept characteristics of the propeller are not considered for the sake of simplicity. Also, as this study is 

a preliminary investigation, a single propeller blade is modelled to ascertain its influence on the 

vibration of the system. The impedance matrix can be determined using the following relationship, 

noting that the inverse is a matrix inverse 

 

𝐙𝐩 =
𝛂𝐩

−1

𝑗𝜔
 (4) 

  

where 𝛂𝐏 is the receptance matrix of the Euler–Bernoulli beam [14]. This element provides six degrees 

of freedom at either end of the beam. The lumped mass propeller is modelled using the following 

impedance matrix 

 

𝐙𝐩 𝐥𝐮𝐦𝐩𝐞𝐝  =  𝑗𝜔 · diag[𝑚𝑝,𝑚𝑝, 𝑚𝑝, 𝐼𝑝𝑥𝑥, 𝐼𝑝𝑦𝑦 , 𝐼𝑝𝑧𝑧]. (5) 

 

A beam is used for the shaft. To conserve the element’s local coordinate system with the global 

coordinate system, the beam element is rotated such that the axial length of the element aligns with the 

z direction. Two shaft elements are used to represent the shaft before and after the journal bearing, this 

is shown in Figure 1. 

The journal and thrust bearings are critical elements in marine propulsion systems. For this 

investigation, it is assumed that both bearings are linear and may be characterised by damping and 

stiffness coefficients 𝑐𝑗𝑏 and 𝑘𝑗𝑏 for the journal bearing and 𝑐𝑡𝑏 and 𝑘𝑡𝑏 for the thrust bearing 

respectively. The journal and thrust bearings are approximated as lumped parameter systems [15], 

subsequently, the impedance matrices can be written as 
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𝐙𝐣𝐛 =     𝐙𝐣𝐛 = diag [
𝑘𝑗𝑏

𝑗𝜔
+ 𝑐𝑗𝑏 ,

𝑘𝑗𝑏

𝑗𝜔
+ 𝑐𝑗𝑏 , 0,0,0,0] 

 

(6) 

 

 

   𝐙𝐭𝐛 = diag [𝑗𝜔𝑚𝑡𝑏 +
𝑘𝑗𝑏

𝑗𝜔
+ 𝑐𝑗𝑏 , 𝑗𝜔𝑚𝑡𝑏 +

𝑘𝑗𝑏

𝑗𝜔
+ 𝑐𝑗𝑏 , 𝑗𝜔𝑚𝑡𝑏 +

𝑘𝑡𝑏

𝑗𝜔
+ 𝑐𝑡𝑏 , 𝑗𝜔𝐼𝑡𝑏𝑥𝑥 , 𝑗𝜔𝐼𝑡𝑏𝑦𝑦 , 𝑗𝜔𝐼𝑡𝑏𝑧𝑧] (7) 

  

where 𝑚𝑡𝑏 is the mass of the thrust bearing and 𝐼𝑡𝑏 is the mass moments of inertia of the bearing in the 

corresponding directions. The supporting structure for the bearings is assumed rigid due to the 

relatively high impedance of the foundation and hull structure. It should be noted that both bearings 

are modelled as rigidly terminated elements and hence only require a total of six degrees of freedom 

rather than twelve. The inclusion of the mass and inertia for the thrust bearing is to account for the 

collar that is attached to the shaft that supports the load in the z direction. There is no such mass or 

inertia concerning the journal bearing as no collar is attached to the shaft. 

3. Results and Discussion 

Figure 2 shows the axial force transmission through the propeller-shafting system for a unit propeller 

hub axial force and rigid propeller. Although not shown, the predicted value is identical to that 

predicted using the simplified model presented by Dylejko [3].  

 

 
 

The next set of results is produced with the flexible propeller model with a unit excitation 

force/moment applied to all degrees-of-freedom at the propeller hub. Figure 3 (top and middle) shows 

the force transmission to the journal bearing and the thrust bearing, respectively, in the y direction for a 

frequency range of 0 to 150 Hz. The bottom plot shows the force transmission to the thrust bearing in 

the z direction. The difference in transmitted force predicted with the rigid propeller model and with 

the flexible propeller model demonstrates the potential significance of neglecting to take into account 

the propeller flexibility. The propeller dynamics influence the reaction forces in both axial and 

transverse directions. This is not surprising given that the transverse and rotational motion of the 

propeller directly coupled to the axial and transverse motion of the shaft. It can be seen that the rigid 

propeller model significantly under-predicts the transmitted force at the thrust bearing. The rigid body 

propeller model, however, predicts with reasonable accuracy, the journal bearing transmissibility. This 

implies that the propeller resonances have the least impact on the journal bearing reaction forces when 

compared with the thrust bearing reaction forces, for this particular system.  

Figure 2. Axial force transmission with a rigid propeller 
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Figure 3. Force transmission through the journal bearing (top), thrust bearing (middle) in the y 

directions and force transmission through the thrust bearing in the z direction (bottom) 
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To gain a better understanding of the motion of the propulsion system with a flexible propeller 

blade, the mode shapes of the system are shown in Figure 4. Due to the lack of terminal points, the 

resolution is poor, but useful information can still be obtained from the figure. The amplitudes of the 

mode shapes are normalized to the tip of the propeller blade so that the relative magnitudes of the 

terminal displacements with propeller motion can be easily identified. Modes 1-3 demonstrate 

significant propeller tip motion indicating that these resonances are associated with the propeller. The 

fourth mode at 85 Hz is consistent with a rigid body propeller mode as there is very little difference 

between the motion of the propeller tip and hub. This frequency also matches the first resonance 

frequency of the lumped mass model. The subsequent modes show that the propeller tip and the hub 

are out of phase further suggesting that these resonance frequencies are related to the flexibility of the 

propeller blade. 

 

   

4. Conclusions 

This paper examined a simplified three-dimensional model of a marine propulsion system using 

immittance methods. Propeller flexibility was included by modelling a propeller blade as a uniform 

cantilever beam. Although it was acknowledged that this is an over-simplification, the results still 

demonstrate that the compliance of the propeller can significantly contribute to the transmitted force 

through the propulsion system. This work provides the foundations for further efforts which will 

investigate the vibration attenuation through the propulsion system. 

Figure 4. Axial vibration mode shapes 
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