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Abstract 

 

With the advent of affordable nano-satellite designs (off-the-shelf payloads, standardised launch 

geometries), increasingly enterprises, governmental agencies and universities have started developing 

their own space programs to explore the environment of Low Earth Orbits. Thin, flexible and 

unfolding/deployable structures are common space engineering antenna and solar panel designs owing 

to their lightweight and ideal packaging characteristics, which are, however, difficult to experimentally 

validate in a 1-g environment. Further, curvatures or discontinuities to increase functionality without 

violating prioritised design criteria may lead to system-level trade-offs: stability issues arising from 

buckling in combination with micro-vibrations which feed back to the satellite’s attitude behaviour. It 

appears that the literature lacks a systematic investigation of these aspects.  

 On-Earth experimental validations (static experiments, model updating) are the starting point for 

studying the response to static/dynamic loading of thin curved flexible structures such as deployable 

high frequency antennas. Linear and nonlinear buckling modes owing to varying loadings 

(aerodynamic drag, solar radiation pressure, residual gravity and magnetic body forces) are found 

together with a high sensitivity to torsional modes’ frequency changes under micro-vibrational forcing.  

1. Introduction  

Nano-satellites such as cubesats, have become popular alternatives to conventional satellites with total 

launch costs being reduced to a few hundred thousand instead of millions of US$ [1-3]. Thin elastic 

structures (TES) such as antennas, solar sails/panels including self-actuating hinges [4-7] play a key 

role in space applications owing to their light-weight, near to ideal packaging properties and their 

flexibility. However, performance enhancements of TES are often accompanied by increased energy 

demands, which again lead to larger but thinner solar panels owing to very stringent packaging 

restrictions in nano-satellites [8].  However, while operating in orbit, any satellite might be exposed to 

external and internal perturbations in form of environmental loads and impulsive thrusters, reaction 

wheels or magneto-torquers, respectively [9,10]. Especially in low earth orbits changing dynamic 

loads owing to rarefied atmosphere, altering solar radiation pressure or different strength of van Allen 

radiation have a strong influence on any TES. A sudden loss of moment of inertia or vibrational 

dissipation [6,11] may cause unwanted spacecraft tumbling [12,13] with the possibility of premature 

de-orbiting [14,15].  

 Hence, even though TES are especially suited for space applications they also need to be rigid, 

sufficiently flexible and able to sustain shocks or vibrations [16].  Flexible and deployable structures, 

similar in principle to those employed as space structures can be found everywhere in daily life 

mailto:s.oberst@adfa.edu.au


 

2 

ranging from umbrellas and carpenter steel tape measures (tape springs) to foldable bar structures, 

bascule bridges and buildings [16,17]. Particularly, tape springs as thin continuous, elastically foldable 

metallic strips with a curved cross section have attracted much attention in space engineering [4]. 

Owing to an increased bending load capacity and rigidity [17,18], self-unfolding and -stabilising tape 

springs have been employed as hinges [16,19], parts of antennas [5] or even robot legs [20]. However, 

the modelling and analysis of tape springs as thin-walled slender and elastic structures needs to 

consider nonlinear behaviour [21] owing to geometrical instabilities and high sensitivities due to local 

cross-sectional folding [11]. Mansfield [22] highlights the problem of TES and their large 

displacements in aerospace applications and derived, therefore, analytical expressions of large-

displacement relations for curved lenticular and constant thickness strips, which were able to display 

torsional and snap-through (nonlinear) buckling [22]. Seffen and Pellegrino [18] studied the dynamics 

of some tape spring deployment actuators and distinguished between (i) equal and (ii) opposite sense 

bending. The equal bending is characterised by two line contacts at the edges whereas the opposite 

bending is characterised by a single centred line contact when bent together.  The folds owing to the 

“equal sense bending” become bi-stable for small rotation angles [23]. In the bistable situation two 

asymmetric equilibrium points exist, which can cause improper deployment in case of already very 

small gravity-induced effects and is accounted for the high imperfection loading/unloading sensitivity 

of the TES. Walker & Aglietti [8] found that for changed torsional (restoring) moments three-

dimensional tape spring folds develop. The three-dimensional structure combines twisting and bending 

and results from asymmetric loading.  

 As mentioned before, in case of a failure of a thin elastic antenna, the spacecraft’s dynamics 

change. However, a rigorous experimental validation of the impact of the stability of a satellite attitude 

with a TES is difficult in a 1-g terrestrial environment due to the dominance of terrestrial gravitational 

forces and moments within the structure over the tiny in-flight disturbance forces and moments. 

Computational analyses of satellite dynamics are rather theoretical and strongly reduced in their 

complexity with many underlying assumptions especially with regards to realistic environmental 

loads; however, even experimentally validated updated models under terrestrial conditions are not 

extensively mentioned literature, which indicates a lack of systematic analysis. Especially for TES, the 

influence of structural nonlinearities and sensitivities to uncertainties in material composition, 

geometry, changing boundary conditions and varying loads is of paramount importance. Hence, we 

study for the purpose of a more complex vibration analysis an experimentally updated numerical 

model of a large tape spring antenna for its buckling behaviour. It assesses if the application of 

imperfections (e.g. varying thickness) or the change of loads under terrestrial and approximated space 

conditions might trigger buckling instabilities. A simplistic satellite structure is equipped with one 

TES to study the spacecraft’s dynamics under approximated loads as encountered in low earth orbits.   

2. Experimental Model Updating 

The TES is characterised by its geometry, boundary conditions and material properties via 

experimental model updating by applying the finite element package ABAQUS 6.14-2 (Standard) in 

combination with FEMTools 3.81. As TES common carpenter tape measures (‘Stanley 30-497’, length 

5000 ± 0.2 mm, width 19.1 ± 0.2 mm, N=9) used as tape spring antennas are studied. Opposite 

bending the TES along its length and clipping it together at about 400 mm provides the elastica [17] 

with its average characteristic radius rc=19.1±0.1 mm (N=9), the average ‘deployment’ width of 

17.5±0.1 mm, a circle segment height of 2.75±0.1 mm (Kincrome vernier calliper 2310). The angle is 

measured over the arc length S to be 2β=S/rc= 0.9947 rads, (Fig. 1(a)). Three loading positions A-C 

are distinguished as depicted in Fig. 1(a). The painted tape spring was on average t=0.1491±0.0030 

mm thick (ball point-ended dial micrometer Mitutoyo PMUD 6-1″ MJ389-37, 0.1 𝜇𝑚 resolution) with 

a weight w = 17.56 ± 0.2 mg/m and a mass density of ρ=6197 kg/m
3
.  Stripping the paint off (solution 

of 87% CH2 Cl2, 13% CH3OH) on n=10, l=100 mm segments (of n=5 carpenter measures), t and w 

reduced to t=0.1128±0.0061 mm (-23.4%) and w=16.75±0.2 mg/m (-4.6%), resulting in spring steel 

density of ρ= 7815.42 kg/m
3
. Owing to the tape spring being within the linear (small) deflection 
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regime (< 6% relative to a beam of length at l=240 mm) and rather stiff, the TES had a reduced (a) 

modal density and (b) buckling sensitivity compared to 1730 mm. However, the mass of the tape 

spring segment (3.5175 g) was too light for the force transducer (B&K 8200) available so that the 

force settings were calibrated by averaging the force spectra of a known circular aluminium plate 

(radius 30 mm, 1 mm thickness), which was validated with the spatially averaged acceleration 

spectrum multiplied by mass density in each point of an aluminium block, cf. [24]. 

In general, an accurate experimental characterisation of TESs is difficult as the boundary and 

loading conditions strongly influence the dynamics (nonlinearity and sensitivity): the structure is easily 

mass-loaded by miniature accelerometers and the excitation over shakers is easily (1) be too weak for 

the force transducers available owing to insufficient acceleration acting on a small mass or (2) the 

resulting vibration amplitudes are inhomogeneously spatially distributed resulting in either a locally 

reduced signal-to-noise ratio or an overdriven measurement system. Further, the TES tested here is 

basically a spring, which is considered to be weakly damped which would require a high frequency 

resolution in order to determine the modal damping. 

Hence two setups A and B are suggested (both measured with a 45 mHz frequency resolution, 81 

and 177 points with n=15 averages each): A has a 210 mm long TES to study the influence of the paint 

on the response and B with a TES of length 1730 mm, representative for a fully deployed antenna.  

The TES in setup A is excited via a B&K 4809 electro-dynamic shaker, in B the woofer of a 

loudspeaker is used (Radioshack Realistic Minimus-7, 8 Ohms, 40 W). The finite element model of a 

625 mm long TES is mesh-independent using 2750 nonlinear SR6 shell elements.  

 
Figure 1.  (a) Cross section, and positions A-C relative to gravity; (b) Experimental setup B to measure 

the damping & to conduct model correlation via FEM; the measurement range includes the grid points 

used for spatial averaging; the excitation area is only approximate (in mm). 
 

 

The finite element mesh and the modal responses were imported into the model updating 

software FEMTools 3.8-1. A Polytec scanning laser vibrometer PSV-400-B (PSV-I-400 head, 

controller OFV-5000, PSV-E-401 junction box) was used to measure the response. Both setups were 
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connected to a B&K 2706 power amplifier and excited in loading position C (Fig. 1) of the TES to 

induce ‘equal sense bending’ [18]. Dynamic equal sense bending produced larger vibrations for 

smaller forces compared to opposite sense bending (Pos A).   

Matching the experimental modes with a numerical modal analysis, gave an average modal 

assurance criterion of 85.4%. The updated material properties of the paint-stripped tape spring steel 

were E = 201.12 GPa (change to baseline +0.56%), and ν = 0.31 (+26.7 %), the density was 0.11% 

higher than that determined over the weight and geometry measurements.  The additional mass 

distribution caused by the paint influences stronger the higher bending and torsional modes (mean 

frequency change ∆𝑓 =6.58 ± 5.23 Hz). In general, very little effect on the amplitude (i.e. damping) is 

observed with a mean amplitude change of about ∆𝐴 0.62 ± 0.55 dB. For torsional modes, however, 

∆𝑓 and ∆𝐴 are more pronounced than for bending modes indicating a higher sensitivity to the changed 

mass distribution by stripping off the colour. 

In order to determine a realistically damped numerical model all experimental modes within the 

frequency band of interest had to be identified and assigned to finite element (FE) modes for the full 

length TES of 1730 mm (setup B). The experimental velocity response spectrum could then be 

correlated to the FE response spectrum, and fitted using the nonlinear least squares method to 

determine the correct Rayleigh damping function [24,25]. The TES was glued to a metal rod (10 x 10 

mm, 1 mm wall thickness), which was then bolted to a large steel frame as shown in Fig. 1(b). 

However, it was found that (1) the TES was not glued in a perfect 90
○
 angle to the metal rod and (2) 

that the steel frame was slightly distorted using a digital inclinometer, which led to a total deviation of 

1.75±0.2
○
 or 52 mm arc length as confirmed over a plumb (Fig. 1(b), 𝛾 + 90○ ≈ 91.72

○
. This deviation 

from 90
○
 had to be accounted for in the gravitational terms in the numerical model. The vibrometer 

was setup at 3.74 m distance to capture about 93% of the length of the TES, as shown in Fig. 1(b). Due 

to the substantially reduced stiffness, higher modal density and associated higher buckling sensitivity it 

was difficult to identify an ideal dynamic range; the displacement at the top was 200 μm as compared 

to 1.6 mm at the end tip. A periodic chirp of 2 seconds attenuation time was the excitation signal; in 

order to limit the influence of gravity the TES was suspended vertically. 

                   
Figure 2. Rayleigh damping curve fitted via a nonlinear least square procedure using the 

experimentally extracted modal damping 

 
However, also the loudspeaker excitation became problematic for distances below 100 mm relative to 

the TES’s tip as the loudspeaker’s magnetic field excited the tape spring’s ferrite steel and caused 

subsequently 0.8 Hz oscillations. Increasing the distance between the TES and the loudspeaker to 

about 150 mm and applying a 1 Hz high-pass filter (1) reduced the low frequency oscillations (2) and 

cleared the signal from residual low frequency noise. Owing to the loudspeaker’s characteristics (cut-

off frequency 30 Hz), energy losses caused by the three dimensional diffuse acoustic sound field as 

excitation source and increasingly nonlinear response the coherence of the measurement dropped to 

about only 0.25 if excited below 75 Hz (low frequency interval) but recovered to about 0.8015 on 

average within 75 and 330 Hz (high frequency interval). However, in the low frequency interval it was 
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difficult to classify the torsional modes.  Up to 80 Hz (coarser frequency resolution of 250 mHz, 29 

nodes line segment, and ten averages) only the bending modes and above 80 Hz both, bending and 

torsional modes were used in the model updating process. After carefully identifying and matching the 

31 of the 35 experimental modes (0- 312.5 Hz) with the 36 finite element modes (0 - 325 Hz), the 

modal damping at each frequency was identified with only about four mixed modes (3D bending & 

torsion) being experimentally not detected. These four missing modes were estimated and correlated to 

the FE modes via comparing the sequence of frequencies; their modal damping was estimated to be 

that of the average modal damping. The frequencies in the interval of 75-325 Hz of the bending modes 

were on average 3.16% higher and that of the torsional modes were 6.02% lower than those measured. 

The material properties differed on average by about +1.3 % to those of setup A due to the different 

number of matched modes (six compared to 17). 

  

 
 

A Rayleigh damping function 𝜉 was fitted to the experimentally extracted modal damping values 

by applying a nonlinear least squares fitting procedure  [24, 25] as depicted in Fig. 2, to the equation. 

 

𝜉 =
𝛼

2𝜔
+

𝜔𝛽
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Figure 3: Spatially averaged velocity measurements for the 1730 mm tape spring; (a) comparing 

modal damping with and without (w/o) low frequency range to Rayleigh damping (with low 

frequency contribution), and (b) investigating the occurrence of torsional modes by introducing 

imperfections and varying load conditions; in (a) the insert gives an relative error estimate in dB for 

varying damping configurations, also indicated (‘x’) are the bending modes.  
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with 𝛼 = 0.01898 and 𝛽 = 1.24 × 10−6 being the mass and the stiffness proportional damping 

parameters. Apart from being as expected weakly damped, the stiffness proportional damping factor 

dominates, both being expected from spring steel [26, 27].  

Using the updated material properties, Fig. 3 compares the experimentally obtained spatially 

averaged high-frequency response with the computationally generated velocity magnitude in out-of-

plane direction: for (a) with different damping values and (b) with imperfections and changed 

preloads. The excitation in the finite element models was set to a pressure with a resultant of 2.82 N 

(~80.5% based on averaged coherence value) taking into account 𝛾 = 1.72°. As can be seen from Fig. 

3(a) and its insert (relative error estimate to baseline model due to changed damping) the forced 

response requires careful extraction of modal damping values. Only if sufficient modal damping 

values are (1) extracted and (2) matched the extraction of Rayleigh damping over the whole frequency 

range is possible with a low average relative error as indicated by the insert of Fig. 3(a). 

The FE model only reflects the bending modes of the spring tape properly (indicated by ‘x’). The 

torsional modes resonances are rather weak. Increasing the asymmetry of the loading and introducing 

imperfections in form of uniformly distributed average thickness ( ± 3σ = 0.1128 ± 0.0183 mm) and 

an asymmetric mesh (unstructured meshing, non-symmetric seeding) triggers the response of the 

torsional modes to increase as indicated in Fig. 3(b). The response level is approximately correct, 

which reflects on a properly determined force magnitude of excitation damping and the numerical 

bending modes are well within frequency range of the experimental data. However, it was already 

highlighted that the updating process based, on comparing the experimental response with the 

numerical response did not work well for the torsional modes. This is not really astonishing, 

considering the large frequency range, the nature of the structure as a very thin flexible nonlinear 

structure with high imperfection sensitivity and the number of modes included. Residual stresses due 

to the manufacturing of the heat-treated spring tape are also not modelled in ABAQUS. However these 

stresses are very influential especially on the appearance and strength of the torsional vibration modes. 

The excitation over a loudspeaker is not ideal, as the sound field is reflected, the excitation is 

asymmetric and rather uncontrolled and wavelength dependent. It is hence a rather complex task to 

reproduce this type of excitation in the FE model. Additionally, the paint of the whole spring tape 

should be stripped off in order to further reduce its effect on the response spectrum.  

3. Static Stability Analysis and its Effect on the Motion of the Satellite 

With the experimentally updated tape spring model at hand, a static stability analysis is conducted to 

test whether a fully deployed tape spring antenna is stable under terrestrial and under space conditions.  

By first applying a quasi-static nonlinear stress analysis, in a second step the proportionality factor 

hence the critical buckling loads Fcr are calculated. The critical buckling loads form buckling 

instability margins (BIM), which are represented by hyperbolas for the non-prestressed cases. Various 

buckling modes such as torsional modes, snap-through bending modes or combinations of thereof can 

be found.  In loading position A (path ‘origin – 1 – 3’, opposite sense bending in Fig. 4), a snap – 

through analysis (nonlinear buckling or Riks analysis) had to be conducted. In loading position C (path 

‘origin – 2 – 3’, equal sense bending in Fig. 4) a linear buckling analysis worked find. In point 2 of 

Fig. 4 exists a bistable solution [8]: Having only gravity acting, the TES remains in an unstable 

equilibrium and loses gradually load capacity, before a total loss of stability occurs (point 3 in Fig. 4). 

Position B is the most complicated to analyse as being marginally stable per se: the tape spring will 

either directly lose stability by twisting into Pos C and buckle or twist into position A. While the 

motion in position C immediately destabilises the structure, turning into position A, gives a kind of 

tertiary structure, which acts in fact stabilising.   

3.1 Terrestrial conditions  

Figure 5(a) investigates numerically the BIMs for of Pos A-C (Fig. 1(a)) as well as that for a straight 

profile steel beam under 1 g terrestrial loading. For Pos A n=4 spring tapes are experimentally studied 
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and their mean value is taken in order to validate the numerical calculations. The spring tape is loaded 

at the tip with discrete brass weights of 5, 10, 20, 50 g as well as 5 x 5 mm
2 

fridge magnet cut-outs 

(0.13 ± 0.08 g) until ‘snap through buckling’ occurred (position 3, Fig. 4).  The uncertainty corridor is 

calculated once but then used for Pos A-C by assuming normally distributed critical loads at each TES 

length in Pos A and taking its standard deviation. The standard deviation is then added to the BIM’s 

standard deviation originating from thickness variations (only numerical calculations). Experimentally, 

the tape spring in Pos A buckles only after a length of 1730 mm with all n=4 tape springs being stable 

at this length having a residual load capacity of  𝐹𝑐𝑟 =5.674 ± 2.74 mN. The numerical computations 

for Pos A using the updated material properties from Section 2 match very closely the experiments and 

cross the uncertainty bounds only for lengths greater than 1700 mm; the longer the tape spring the 

more the uncertainty corridor is dominated by the finite resolution of the incrementally added weights. 

The failure-length of Pos C is with 736 mm much higher than that of the straight steel tape, but it is 

much lower than that found for Pos B (1026 mm) and Pos A (>1730 mm), and is within reach of the 

experimental maximum buckling length of about 688 ± 17 mm (n=30). 

 

 

3.1.1 Space environment  

Next the finite element model is used to simulate the stability behaviour of the spring tape in Pos C as 

the least stable position exposed to a combination of environmental loads as encountered in low earth 

orbits (LEO). Here, the (1) aerodynamic (AP) and the (2) solar radiation pressure (SRP), as well as 

body forces owing to (3) residual micro-gravity and (4) electro-magnetism (van Allen radiation belts) 

are considered. The aerodynamic pressure 𝑃𝑎 is calculated over 

 

𝑃𝑎 =
1

2
𝑐𝑑𝜌𝑣2 = 4.47E-3 N/m

2
.                                    (2) 

 

Here, 𝑐𝑑 = 2.85 is the assumed lateral drag coefficient at low solar activity (average) of a box 

considering an orbital and a thermal speed as encountered for orbits of 400 – 800 km height [28]; 

especially it is considered that above 500 km the drag coefficient increases, due to (1) a change in the 

atmospheric composition from being N molecule dominated to oxygen molecules in the thermosphere 

and (2) to the violation of the hyper-thermal flow assumption [28,29]. The density ρ at about 400 km 

height (hyper-thermal flow) is assumed to be rarefied with either 𝜌= 5.04 E-11 kg/m
3
 for increased 

solar activity or 𝜌= 3.89E-12 kg/m
3
 in case of mean solar activity  [28-30]. The average relative speed 

Figure 4: Schematic of moment-rotation relationship for tape springs greater than 250 mm (nonlinear ‘large 

deflection’) cf. [14]; (1) opposite sense bending (first quadrant): after linearly increasing, the tape spring 

deflects largely then ‘snaps-through’ (Riks analysis, nonlinear buckling) at point ‘1’, loses immediately 

stiffness, then a constant ‘steady-state moment’ ‘3’ sets in; reducing the angle again gives to hysteresis; (2)  

equal sense bending the maximum moment is far lower and very quickly the system buckles ‘2’ (linear 

buckling due to a bifurcation  and bi-stability (torsional mode), then the moment decreases quickly to the 

‘steady-state’ moments ‘3’. 
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of a spacecraft in-orbit is calculated to be 𝑣 = √𝐺𝑀/𝑟 in [7.65, 7.89] +/- [0.0383, 0.0395] km/s; here 

𝐺 and 𝑀 being the universal gravitational constant (not considering its variation [31]) and the earth’s 

mass but neglecting the mass of the spacecraft. For 𝑃𝑎 the resultant force is 𝐹𝑎 = 0.147 mN. 

The solar radiation pressure 𝑃𝑆𝑅 and its resultant force 𝐹𝑠 are calculated considering the light’s 

absorption and reflection using the so-called ‘cannonball model’ [32]  

 

𝑃𝑆𝑅 =
𝛷

𝑐
(1 +

4

9
𝛿) = 8.69E-6 N/m2,                     (3) 

 

with 𝛷 = 1850 W/m
2 

being the solar flux at 800 km (1375 W/m
2 

at 400 km) distance to the earth,  𝑐 = 

299,792,458 m/s,  being the speed of light and 𝛿 = 0.92 being the sum of the specular and diffuse 

reflection coefficients of gold foil as the worst case [32]. For 𝑃𝑆𝑅 the resultant force is 𝐹𝑠 = 2.85E-

4mN. Furthermore, body forces  

 

𝐹𝜇𝑔 = 2.5E − 6 𝑔 𝑚 =  0.02453 mN  and           (4) 

 

𝐹𝑒𝑚 = 𝑞(𝐸 + 𝑣𝐵) = 3.49 E-4 mN                       (5) 

 

owing to 𝜇 –gravity (𝐹𝜇𝑔, with 𝑔 = 9.81 m/s
2
) [33,34] and electromagnetic attraction  as exerted by 

e.g. the van Allen radiation belts act on the orbiting spacecraft. Here, 𝐵 =  0.3E-4 kg/Cs  [35] being 

the magnetic field and E = 400 mV/m being the maximum electric field magnitude observed in van 

Allen probes [36,37].  The charge of the spacecraft (q= 6E-7 C) is calculated assuming 1000 V as peak 

voltage of the satellite [36-38].   

 

 
The results of the static stability analysis on the tape spring as depicted in Fig. 5(b) indicates that 

applying the aerodynamic and the solar radiation pressure gives a larger BIM than under terrestrial 

conditions for Pos C. Taking into account electromagnetic body forces aggravates the situation 

considerably.  Reducing the air density owing to a mean solar activity increases the stability but finally 

leads to buckling at about 1510 mm. 
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Figure 5: (a) Experimental BIM taken as average (n=4) with its uncertainty corridor for pos A; computational 

data for pos B and C as well as for a straight profile are also included; the uncertainty stems mainly from the 

standard deviation of using incremental loads in the experiments. The lowest maximum load of Pos B and C 
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  It can be summarised that the effects of  (1) different preloads, (2) the sum of different forces 

acting, and (3) the direction of the applied buckling load are not proportional to critical loads or give a 

significantly different stability region. This is due to the strong nonlinearity and high sensitivity of the 

structure. Hence, even though the curved tape spring is much stronger than its straight counterpart, its 

deflection even for rather small loads becomes large leaving the zone of linear Euler-Bernoulli beam 

approximations (Schematic Fig. 4). However, all loads as calculated here can only serve an 

approximation for loads as encountered in space and are associated with large uncertainties. Research 

on the electromagnetic field as exposed by the Van Allen belts is still in its infancy stage. Also, e.g. the 

density ρ of the air is not only depending on the distance to earth but also on the solar activity, 

predictions of ρ are found to underestimate the density by 15% for low solar intensity and up to 30-

50% at high solar activity [28]. Only a mission in space with experimentally measured forces on the 

TES could validate results presented here. 

Next a transient nonlinear time domain analysis is conducted using ABAQUS Explicit 6.14-2.  

The loads determined in Section 3 but without the electromagnetic body force are applied to a 

simplistic satellite model with two tape springs. The body of the spacecraft is made of solid material 

with the mass of 1.33 kg (100 x100 x 100 mm
3
) with the Young’s modulus and Poisson’s ratio being 

that of aluminium (70 GPa & 0.28).  The two elastic structures are not connected to each other but tied 

to the nodes of the satellite body. The spacecraft has in total 3196 nodes (64 C3D8I ABAQUS/Explicit 

elements for the satellite body and 1566 S4R linear shell elements) and is exposed to a constant field 

of 𝜇 -gravity. The AP and SRP (as calculated in section 3) act perpendicular to only one elastic 

structure in the equal bending sense and on one side of the satellite body perpendicular to 𝜇-gravity 

(red in Fig. 6(a)). As the load increases, the elastic structure starts to buckle at around 0.50 s (Fig. 

6(b)).  As a consequence of the failure of the tape spring the satellite changes its position suddenly and 

rotates about its x-axis and y-axis as depicted in Fig. 6(b) for the instantaneous rotation (difference 

between undeformed and deformed structure).  

 

4. Conclusions 

Numerical models of spring tape antennas are here experimentally updated in order to test their 

stability and in case of a failure their impact on a generic satellite model. Owing to imperfections such 

as thickness variations, asymmetrical loading an asymmetrical mesh, resonances of torsional modes 

appear in the velocity response spectrum possibly due to high sensitivity of thin, elastic structures 

(TES) to stress gradients. The dynamic updating of the thin elastic structure as tested here was very 

difficult. In case of the spring tape antenna used the numerical model should include the material’s 

residual stress distribution owing to heat treatment in course of the manufacturing process. The forcing 

over a loudspeaker is not ideal the acoustic waves presumably excite the torsional modes more than a 

mechanic shaker would, owing to reflections, near field effects, local sound pressure differences and 

wavelength dependent coupling to the structure. A non-contact and precise point excitation as over 

ultrasonic interference exciter using the ultrasonic radiation force should be developed for the purpose 

of testing thin elastic structures. Conducting a static stability analysis using both a linear and nonlinear 

Figure 6: The satellite structure (a) being ramp loaded with aerodynamic and solar radiation pressure (in 

red) and 𝜇-gravitation; and in (b) after application of the loads at t=1.0 s the buckled structure, and its 

stresses on the deformed structure, its displacement relative to the undeformed. 

(a) (b) 
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buckling (snap-through) analysis for terrestrial gravity gave however well matching numerical and 

experimental buckling instability margins (BIM). The critical load curve varies for the buckling forces 

being either applied in opposite, equal sense bending or ‘sideways’ (at the centre of the spring tape’s 

tip) tangential to the spring tape’s curvature. Applying approximated space loads via a static nonlinear 

stability analysis indicates that the structure buckles sooner than under terrestrial conditions if 

electromagnetic forces are considered. As the deployment length of the TES increases, it will have a 

greater propensity to become unstable under adverse loading aerodynamic, solar radiation and micro-

gravity conditions. This is also true for a lower density assumption at mean solar activity where the 

analysis indicates that the TES could buckle at about 87% of the chosen maximum length.  As 

indicated by a transient analysis, the equal side bent tape spring antenna buckles and may initiate 

tumbling of the satellite.  It is shown that owing to failure and a sudden loss of inertia and imbalance in 

the external loads, a disturbance torque will be imposed on the spacecraft. If this is not fully 

compensated by the attitude determination and control system, the spacecraft will start to tumble. 

However, it has to be mentioned that the true environmental loading in space is unknown. A complete 

validation of the dynamic behaviour in space is only possible by monitoring the stability and vibrations 

of the antennas for in-space/ in-orbit missions. 
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