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Abstract

Most physics related to voice production takes place in our larynx and in our vocal tract. In this work we
will focus on the latter and show its role in the generation of vowels, diphthongs and sibilants. A review
will be made of the involved partial differential equations and the finite element methods (FEM) used to
solve them. These equations may range from the irreducible wave equation in the case of vowels, to its
mixed formulation in an Arbitrary Eulerian-Lagrangian (ALE) framework in the case of diphthongs, or
to the incompressible Navier-Stokes equations, which are solved to obtain the acoustic source terms of
acoustic analogies in the numerical generation of sibilants. Yet, it is well-known that for mixed problems
in general, the standard Galerkin FEM suffers from oscillations which make necessary to resort to some
kind of numerical stabilization. The variational multiscale methods (VMM), also often referred to as
subgrid scale stabilization (SGS) methods, offer a nice way out to this situation by splitting the problem
unknowns into large scales, resolvable by the computational mesh, and small scales whose effects onto
the large ones have to be modeled. The additional terms in the variational equations arising from the
modeled subscales not only account for stabilization but also offer many other advantages that will be
outlined in the present work. As regards the numerical examples, three-dimensional simulations of vowels
and diphthongs will be presented, as well as a simulation on sound generated by flow past a sharp edge
at the exit of a rectangular duct, which is important for understanding some basic features of sibilant
production.

1. Introduction

The production of voice involves many different physical phenomena that can be described by means of
partial differential equations (PDEs). For instance, vowels can be generated by solving the linear wave
equation for the acoustic pressure inside the vocal tract (VT), once prescribed, at its entrance, a train of
glottal pulses generated by the vocal folds. The shape of the VT changes for each vowel pronunciation
and its resonances (known as formants in the voice and speech scientific communities) allow one to
distinguish one vowel from another. Many numerical simulations (most using the finite element method,
FEM) have been performed to date so as to analyze several aspects related to vowel production. These
simulations are motivated either for better understanding the underlying physics (e.g., determine the role
played by the VT lateral cavities like the piriform sinuses and valleculae, the effects of radiation and VT
wall losses, etc., see [1, 2, 3, 4, 5] among others), or for medical applications as well [6, 7].

As we move to diphthongs it becomes necessary to deal with time depending VTs that evolve from
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an initial vowel to a final one. The wave equation in irreducible form used for vowels becomes no longer
useful and one has to work with the wave equation in mixed form instead. The reason for that is the
possibility to express the mixed wave equation for the acoustic pressure and acoustic particle velocity
in an arbitrary Eulerian-Lagrangian (ALE) frame of reference that moves with the VT, see [8]. To date,
little work has been done as regards diphthong sound generation in dimensions higher than one (see
e.g., [8, 9, 10] for some exceptions) and numerical efforts are currently being placed on using realistic
MRI geometries, as well as on attempting an articulatory driving of the VT motion.

When it comes to sibilant production (e.g., /s/) further PDEs are to be solved. The basic generation
mechanism is well understood and attributed to the diffraction by the teeth of the aerodynamic sound
generated by the turbulent glottal airflow passing the gap between incisors [11]. Low Mach number
computational aeroacoustics (CAA) strategies can be applied to simulate that process and shed light into
the relative influence of the upper/lower incisors and lips in the generated sound [12, 13, 14]. The CAA
strategy usually involves first solving the incompressible Navier-Stokes equations to extract the acoustic
source term for an acoustic analogy, being Lighthill’s the standard one [15].

In this paper an outline will be made of the various numerical difficulties encountered when solving
vowels, diphthongs and sibilants. In particular, it will be exposed why the standard Galerkin FEM fails
when applied to mixed problems, like the mixed wave equation or the Navier-Stokes equations. The
spurious oscillations and/or blown up of the Galerkin FEM solutions can however be fixed by resorting
to numerical stabilization strategies like the variational multiscale method (VMM) (see [16, 17]). Some
examples of numerical simulations will be presented that show the good performance of such methods.

2. Vowels: the wave equation in irreducible and mixed form
2.1 The irreducible wave equation for the acoustic pressure

A vowel can be generated to a good degree of accuracy by directly solving the wave equation in a
computational domain Ω, which comprises the vocal tract and an outer region where waves exiting the
mouth can propagate. Alternatively, one could work in the frequency domain and solve the Helmholtz
equation instead. It is quite customary then to emulate radiation losses at the mouth by means of impedance
load models corresponding to radiation of a piston set in an infinite plane, or in a sphere. Yet, we will
be concerned throughout this work with numerical simulations in the time domain to naturally account
for moving domains (e.g., diphthongs) as well as to directly convert the computed acoustic pressure at a
given point into an audio file, and listen to the generated sounds.

As for vowel production, the wave equation in Ω has to be supplemented with appropriate initial and
boundary conditions on ∂Ω. Let us split the latter into four non-intersecting regions (see Fig. 1). ΓG in the
figure stands for the cross-section where the vocal folds are located. Besides, ΓW denotes the vocal tract
walls characterized by their impedance, ΓH stands for the head contour, which can be considered rigid to
a good extent, and Γ∞ is a fictitious non-reflecting boundary where the computational domain ends.

The acoustic pressure p(x, t) corresponding to vowel generation can then be obtained from the
solution of(
∂2
tt − c2

0∇2
)
p = 0 in Ω, t > 0, (1a)

with boundary and initial conditions

∇p · n = −ρ0∂tug on ΓG, t > 0, (1b)
∇p · n = −µ/c0∂tp on ΓW, t > 0, (1c)
∇p · n = 0 on ΓH, t > 0, (1d)
∇p · n = 1/c0∂tp on Γ∞, t > 0, (1e)
p = 0, ∂tp = 0 in Ω, t = 0. (1f)

In (1), c0 designates the speed of sound, ρ0 the air density, ug(t) the train of glottal pulses and µ is
a constant admittance for the losses at the vocal tract walls. n stands for the normal vector pointing
outwards ∂Ω. The explicit dependence of variables on space x and time t will be omitted throughout the
paper to alleviate notation.

The method of lines to solve equation (1) consists in using a finite element strategy to discretize the
weak form of (1) in space, and then using a finite difference scheme for the time discretization of the
resulting algebraic matrix system. The weak form is found as usual: we first multiply (1) by a test function
q, we integrate the resulting expression in Ω and then, integrating by parts we transfer a nabla operator from
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Figure 1 – A sketch of the computational domain Ω of Eq. (1) in text. ΓG represents the glottal cross-
sectional area, ΓW the vocal tract walls, ΓH the human head and Γ∞ a non-reflecting boundary.

the problem unknown to the test function. If we consider, for the ease of exposition, homogeneous Dirichlet
conditions on ∂Ω, the Laplacian term in (1) simply results in a term a(q, p) ≡

∫
Ω∇q·∇pdΩ in the problem

weak form. It turns out that a(q, p) is a coercive bilinear form (i.e., ∃α > 0, ∀p ∈ V, a(p, p) ≥ α ‖p‖2V ,
with V ≡ H1

0 (Ω) in the present context). For a stationary problem, the Lax-Milgram lemma then
guarantees that the problem is well-posed in the Hadamard sense (unique solution bounded by the
problem data, see e.g., [18]). Coercivity has the nice property that becomes transferred to the standard
Galerkin FEM discretization of a(q, p). That is to say, if the continuous bilinear form is coercive, then
the stiffness matrix of the resulting FEM algebraic matrix system is automatically positive definite and a
unique bounded discrete solution can be found for it. Therefore, as regards the numerical solution of the
wave equation (1), most problems will come from its time discretization rather than from the spatial one.

For vowel production, however, the acoustic pressure is usually required at a location quite close
to the mouth exit. This means that waves generated at the glottis have not to travel many wavelengths
from where they originate to the point of interest, even for high frequencies (a vocal tract has a typical
length of 17 cm). Therefore, time discretization is not that critical and a simple second order finite
difference central scheme to approximate the second order time derivative in (1) provides fairly good
results. Problems may arise though, when using very detailed MRI vocal tract geometries. If very fine
meshes are needed for them, the CFL stability condition will impose very small time steps resulting
in lengthy computations. Besides, needless to say that a lumped approximation for the mass matrix is
employed, as usual, to avoid full matrix inversion at each time step of the simulation.

Rather than numerical instabilities related to time and space discretizations, probably most difficulties
regarding vowel generation stem from the need to resort to Perfectly Matched Layers (PMLs) to avoid
spurious reflections at the boundary of the computational domain ∂Ω. This is so because, numerically,
the Sommerfeld condition (1e) only performs well for waves impinging in the direction normal to the
boundary. Implementing a PML for the irreducible wave equation is rather intricate and involves the
introduction of several auxiliary variables to the problem [4]. Another non-straightforward topic for vowel
production is that of implementing frequency dependent wall impedances in time domain simulations
instead of the constant value used in (1c).

2.2 The mixed wave equation for the acoustic pressure and acoustic particle velocity
Instead of solving the wave equation (1) to generate a vowel, one could have also directly resort to the
linearized continuity and momentum equations that describe sound propagation in a quiescent fluid,
namely

1

ρ0c2
0

∂tp+∇ · u = 0, (2a)

ρ0∂tu+∇p = 0, (2b)

where p(x, t) stands for the acoustic pressure, u(x, t) for the acoustic particle velocity and ρ0 for the
air mean density. Equation (2b) is to be supplemented with appropriate initial and boundary conditions
not detailed here due to space restrictions. Note that (1) is obtained by subtracting the divergence of (2b)
from ρ0 times the time derivative of (2a). Dealing with (2) may be advantageous for the computation
of impedances and/or of the acoustic intensity inside the vocal tract, given that the acoustic particle
velocity becomes a problem unknown, rather than a quantity to be derived from the computed FEM
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approximation to the acoustic pressure, as in (1). Yet, the plenty justification for (2) manifests when
simulating diphthongs and equation (2) needs to be expressed in a frame of reference that follows the
mesh movement when transitioning from one vowel to another (see next subsection). It is however
interesting to have a glance at the numerical difficulties encountered when trying to solve (2). Those will
also manifest in the PDEs of forthcoming sections.

Equation (2) is a particular example of the so called mixed problems. The well-posedness of the
weak form of stationary mixed problems relies on the fulfillment of an appropriate inf-sup (or LBB)
compatibility condition. However, fulfillment of this condition does not actually translate from the
continuum to the discrete level, which causes typical spurious oscillations when solving mixed problems
with the standard Galerkin FEM method. In other words, even if the continuum problem is well posed,
the stiffness matrix of its corresponding Galerkin FEM matrix system does not necessarily fulfill the
conditions (null kernel and full range) that guarantee existence of a unique solution. As we shall see, this
will require some type of strategy to avoid instabilities in the numerical solution of mixed formulations.

In the case of time-depending problems as (2), well-posedness is stated by means of the Hille-Yosida
theorem (see e.g., [18]). Let us have a closer inspection at how it works for the present case, in order
to better understand the ultimate reason for the failure of the Galerkin FEM approach. We will closely
follow [19] for that purpose.

Equation (2) can be written in matrix form as

µ∂tU +AU = 0, (3)

where we have made the following identifications

U ≡
[
p

u

]
, µ ≡

[
(ρ0c

2
0)−1 0

0 ρ0I

]
, A ≡

[
0 div

∇ 0

]
. (4)

Note that A can also be written as A ≡ Ai∂i where the elements Amn
i of matrices Ai have values

Ai i+1
i = Ai+1 i

i = 1 and zero otherwise. Next, assume homogeneous Dirichlet boundary conditions
(p = 0 on Γp, n · u = 0 on Γu, ∂Ω = Γp ∪ Γu, Γp ∩ Γu = ∅) again for the ease of exposition, as well
as initial boundary conditions U(x, 0) = U0 = [p0,u0]> in Ω. Let us introduce the functional spaces
Vp = {q ∈ H1(Ω)|q = 0 on Γp}, Vu = {v ∈ H(div,Ω)|n · v = 0 on Γu} as well as the product spaces
V = Vp × Vu and L = L2(Ω)×L2(Ω). The weak formulation of problem (2) in a time interval [0, T ]
can then be posed as that of finding U ∈ C0([0, T ];V ) ∩ C1([0, T ];L) such that

(µ∂tU ,V )L + (AU ,V )L = 0 ∀ V = [q,v]> ∈ L, (5a)
(U(0),V )L = (U0,V )L = 0 ∀ V ∈ L, (5b)

where the inner product in L is defined as

(U ,V )L :=

∫
Ω
U>V dΩ =

∫
Ω
qp dΩ +

∫
Ω
u · v dΩ. (6)

The Hille-Yosida theorem guarantees that if A is monotone and maximal (which can be proved for
the present case) then (5) is well posed and has a unique solution bounded by the initial conditions (we
are not considering external forces in this example). The following bounds follow

sup
t∈[0,T ]

{
1

ρ0c0
‖p‖2 + ρ0c0 ‖u‖2

}1/2

≤ C

{
1

ρ0c0
‖p0‖2 + ρ0c0 ‖u0‖2

}1/2

(7a)

sup
t∈[0,T ]

{
1

ρ0c0

[
‖p‖2 + ‖∇p‖2

]
+ ρ0c0

[
‖u‖2 + ‖∇ · u‖2

]}1/2

≤ C

{
1

ρ0c0

[
‖p0‖2 + ‖∇p0‖2

]
+ ρ0c0

[
‖u0‖2 + ‖∇ · u0‖2

]}1/2

, (7b)

for a positive real constant C and with ‖f(x, t)‖2 ≡
∫

Ω f
2(x, t) dΩ. Note that (7a) provides control on

the pressure and the velocity and prevents that these variables could attempt an infinite value in Ω at a
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Figure 2 – The generation of diphthong /ai/ involves solving the wave equation in mixed form in a vocal
tract that transitions from /a/ to /i/ (geometries adapted from [20]).

given time instant. The same will occur for the time derivatives of these quantities because an analogous
bound for ∂tU to that for U in (7a) can be derived. The bound (7a) can be proved by testing the weak
form (5) with V = U , using the monotonicity of A and integrating in time from t = 0 to an arbitrary
value t′. Further, the second bound (7b) is crucial because, in addition to (7a), it provides control on the
gradient of the acoustic pressure and on the divergence of the acoustic particle velocity. It can be proved
by testing the weak form (5) with V = diag[ρ0c0, (ρ0c0)−1I]AU , using the maximality of A and the
bound (7a) for U , together with its analogous for ∂tU . As we shall next see, the bound (7b) is what
precisely fails when trying to find a numerical solution to (5) by means of the standard Galerkin FEM.

The conformal Galerkin FEM approach to solve (5) consists in finding a discrete finite dimensional
space Vh ⊂ V where to interpolate the acoustic pressure and velocity fields. The problem reads: find
Uh = [ph,uh]> ∈ C1([0, t];Vh) such that

(µ∂tUh,Vh)L + (AUh,Vh)L = 0 ∀ Vh = [qh,vh]> ∈ Vh, (8a)
(Uh(0),Vh)L = (U0h,V )L = 0 ∀ Vh ∈ Vh. (8b)

The reason why the Galerkin FEM cannot provide an accurate solution to the problem can now be made
apparent. It is possible to obtain an analogous bound to (7a) for the discrete Galerkin solution Uh by
testing (8a) with Vh = Uh and therefore control the L2-norm of the approximated acoustic pressure and
acoustic velocity. However, we have no means to prove a bound analogous to (7b) for the pressure gradient
and the velocity divergence, given that we cannot test (8a) with Vh = AUh. This is so because Uh ∈ Vh
but AUh /∈ Vh. There is thus no guarantee that the term

∫
ΩU

>
h AUh will be bounded by the problem

initial conditions. Note that just bounding the L2-norm of the interpolated solution does not prevent this
solution from oscillations. Actually this is what one gets in practice: spurious oscillations appear in the
numerical acoustic pressure and acoustic particle velocity which make them totally unrealistic.

At this point two possibilities emerge. Either one designs a specific finite element with tailored inter-
polation spaces for the pressure and the velocity such that

∫
ΩU

>
h AUh can be bounded, or, alternatively,

one resorts to strategies which enlarge the Galerkin discrete weak form with some additional stabilization
terms. These terms are to be such that an analogous bound to (7b) can be proved for the new stabilized
weak form. The Variational MultiScale (VMS) finite element method to be outlined in Section 5 proposes
a general framework to allow one deriving these stabilization terms for any partial differential equation.

3. Diphthongs: the mixed wave equation in an ALE frame of reference
In the preceding section it has been shown that vowels can be produced either by resorting to the
irreducible wave equation for the acoustic pressure, or by means of the wave equation in mixed form for
the acoustic pressure and particle velocity. In view of the numerical difficulties associated with the later,
one may prefer to deal with the former. However, as soon as we get to diphthong generation one has to
deal with the mixed wave equation. This is so because diphthongs involve solving the wave equation
in a moving domain that changes from the vocal tract geometry of say, an /a/, to that of an /i/, for the
particular case of diphthong /ai/ (see Fig. 2).

If the vocal tract is moving/distorting at a velocity ud(x, t), it becomes convenient to express the
mixed wave equation (2) in a framework moving with the computational domain. A quasi-Eulerian
ALE formulation (see e.g., [21] and references therein) can be used for that purpose which accounts for
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replacing the time derivative of any fluid property, say f , by

∂tf ← ∂tf − ud · ∇f. (9)

Given that when the equations become discretized ud(x, t) corresponds to the interpolation from the node
mesh velocities, ud(x, t) can directly be referred to as the mesh velocity. Inserting (9) into (2) results in

1

ρ0c2
0

∂tp−
1

ρ0c2
0

ud · ∇p+∇ · u = 0, (10a)

ρ0∂tu− ρ0 ud · ∇u+∇p = 0, (10b)

which is a convective version of (2) driven by the mesh velocity. There is no straightforward way to
combine (10a) and (10b) to obtain an irreducible equation for the acoustic pressure. Therefore, one is
forced to solve the mixed problem (10) to produce diphthong sounds.

To the best of the authors knowledge and quite amazingly, there is no existent proof for the well-
posedness of the weak formulation of problem (10). Equation (10) closely resembles that of wave
propagation in shallow waters and to date only very partial results have been proved for it. In particular it
has been shown that the continuous linearized two-dimensional shallow water equations are well posed
only for some specific boundary conditions in a very simple rectangular geometry [22]. Despite of this
remarkable fact, it is quite reasonable to expect that (10) will present very similar numerical problems to
those of the mixed wave equation (2), further reinforced by the presence of the mesh velocity convective
terms. Resorting to stabilization strategies will then become a must.

On the other hand, the generation of diphthongs also involves further numerical difficulties due to the
computational mesh movement. If the geometries of the vocal tract are not very complex (e.g., simplified
vocal tracts of circular cross section) the mesh movement can be accounted for by solving a Laplacian
equation for the node displacements. However, if one deals with vocal tracts from MRI data remeshing
strategies become necessary. This is also the case if one wishes to solve outward wave propagation due
to the mouth exit distortion. In that regard, it should be mentioned that implementing a PML to avoid
reflections at the boundary of the computational domain becomes much easier for the wave equation in
mixed form than for its irreducible counterpart.

4. Sibilants: the Navier-Stokes equations and the acoustic analogies
To generate a sibilant sound like /s/, the anterior portion of the tongue closest to the lips approaches the
hard palate creating a small constriction which drives a jet airflow through it. This turbulent jet impinges
on the upper incisors and it is deflected downwards to pass through the gap between the tips of the
upper and lower incisors. According to [11], it is precisely the diffraction of the turbulent jet pressure
aerodynamic sound by the sharp edges of the upper and lower incisors which generate most of the fricative
sound. Yet, many research is still needed to determine the relative values of such incisor contributions, as
well as the influence of the lips in the production of sibilants. All in all it turns that the basic mechanism
of sibilant production relies on aeroacoustics. Given that the flow coming from the lungs, inducing the
vocal folds self-oscillations, and finally emanating from the mouth does so at a very low speed, low Mach
number computational aeroacoustics (CAA) strategies can be applied to reproduce the phenomenon.

The most common approach for low Mach number CAA is a hybrid procedure which consists in
first solving the incompressible Navier-Stokes equations

∂tu
0 − ν∆u0 + u0 · ∇u0 +∇p0 = f , (11a)

∇ · u0 = 0, (11b)

with u0(x, t) and p0(x, t) respectively standing for the incompressible flow velocity and pressure, ν
for the kinematic flow viscosity and f for an external force. In the second step of the approach a wave
operator is solved using a source term built from the outputs u0 and/or p0 of the first step. Typically, the
celebrated Lighthill acoustic analogy is applied and one obtains the acoustic pressure from the irreducible
wave equation (1), with ρ0∂i∂j(u

0
iu

0
j ) as the source term. Alternatively, one could also attempt a mixed

formulation, namely,

1

ρ0c2
0

∂p

∂t
+∇ · u = 0, (12a)

ρ0
∂u

∂t
+∇p = −ρ0

∂(u0
iu

0
j )

∂xj
. (12b)
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It should be remarked that Lighthill’s analogy in irreducible or mixed form (12) is valid as long as one
is interested in the sibilant sound recorded at a position well-located outside the mouth, in a quiescent
position not influenced by the expelled flow. If one was interested in computing the acoustic field inside
the vocal tract, or at a point close to the mouth exit, then one should better solve instead the acoustic
perturbation equations.

In Section 2.2 we have already commented on the numerical difficulties associated to the Galerkin
FEM for (12), so let us next briefly focus on the Navier-Stokes equations (11). The well-posedness of (11),
or of its weak formulation counterpart, remains today an open problem the importance of which has
been reflected by its inclusion as one of the Millennium Prize Problems stated by the Clay Mathematics
Institute. To date, it has been only proved that a weak solution to the equations exist for finite time
intervals, and that a classical solution for the differential problem also exists, yet for a time interval which
is inversely proportional to the flow Reynolds number (this makes the result meaningless for most flow
situations of practical interest).

In his classical proof for the existence of weak solutions Leray was able to prove the following
energy bound (now known as Leray’s inequality),

1

2

∥∥u0
∥∥2

+ ν

∫ t

0

∥∥∇u0
∥∥2
ds ≤ 1

2

∥∥u0
0

∥∥2
+

∫ t

0

∫
Ω
f · u0dΩds. (13)

An analogous bound to (13) in terms of the initial problem conditions and external forces can be derived
for the Galerkin FEM approach to the problem. However, one can devise why such a bound will be
unsatisfactory for the numerical solution. First, the bound provides no control on the incompressible
pressure. Second, the control on the velocity gradient becomes irrelevant for small viscosity values (which
would correspond to high Reynolds numbers had been the equations adimensionalized). As commented
in Section 2.2, only bounding the L2-norm of the velocity (incompressible in this case) does not prevent
spurious oscillations to appear. Therefore, it is also clear that some type of stabilization strategy becomes
imperative for the numerical solution of the Navier-Stokes equations.

5. Subgrid scale stabilized finite elements
The numerical difficulties reported for the wave equation in mixed form (12), or for the Navier-Stokes
equations (11), can be addressed in two different ways. As mentioned at the end of section 2, one option
is that of designing specific finite elements that fulfill the particular discrete LBB-like conditions of the
original problem. This usually requires using different interpolation spaces for the variables at hand (e.g.,
acoustic/incompressible pressure and velocity), which can make the code implementation costly. Another
option is that of adding some stabilization terms to the Galerkin FEM variational form. The additional
terms should make possible to find appropriate bounds for the stabilized weak form, in terms of the
problem initial data and external forces.

A general framework where to set the stabilization problem is the variational multiscale method
(VMM) which was originally proposed in [16, 17] (also known as the subgrid scale method, or, for some
particular choices of the subgrid scales, as the residual-based stabilized method). The key idea of the
approach is simple. The spurious oscillations encountered in the numerical solution of an equation must
come from those small scales (subscales or subgrid scales) that we disregard in the discretization process.
Therefore, the effects of the subscales onto the computed scales should be taken into account to improve
the solution.

Let us see how the method proceeds for the weak formulation of the mixed wave equation (12).
Again, we will closely follow [19]. We start by decomposing the exact solution of (12), U , into a finite
element component Uh that can be resolved by the computational mesh, plus a subscale U ′, which will
have to be modelled. Substitution of U = Uh +U ′ into (12) yields two equations. The first one governs
the dynamics of the large scales. Considering that the subscales vanish at the interelemental boundaries,
that they do not change with time (quasi-static assumption) and integrating by parts to transfer the spatial
derivatives to the test function, we get

(µ∂tUh,Vh) + (Ai∂iUh,Vh)− (U ′,A>i ∂iVh) = (F ,Vh). (14)

Besides, the second equation, governing the behavior of the static subscales, is given by

(µ∂tUh,V
′) + (Ai∂iUh,V

′) + (Ai∂iU
′,V ′) = (F ,V ′), (15)
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(a) (b)

Figure 3 – (a) Vocal tract transfer function for vowel /a/. (b) Spectrogram for diphthong /ai/.

and corresponds to the L2-projection of µ∂tUh +Ai∂iUh +Ai∂iU
′ = F onto the subscale space. Let

P ′ denote this projection and rewrite (15) as

P ′(Ai∂iU
′) = P ′[F − (∂tUh +Ai∂iUh)] =: Rh, (16)

where we have introduced the residualRh in the last equality. P ′ is taken as the identity in the algebraic
subgridscale method ASGS, or as P ′ = I −Πh in the orthogonal subgrid scale method OSS [23] (Πh

stands for the projection onto the finite element space). The solution to (16) is unknown and has to be
somehow modelled. A reasonable option consists in taking P ′(Ai∂iU

′) ≈ τ−1U ′ so that U ′ = τRh

(see e.g., [23, 24, 19]). τ ≡ diag(τp, τu) stands for a matrix of stabilization parameters to be determined,
which has been chosen diagonal for simplicity. The values for τp and τu can be found from an analysis
of the subscale equation in the wavenumber domain, which ensures that despite of not having an exact
solution for U ′, the amount of kinetic energy U ′ transfers to the large scales is correct. For the present
problem it turns that τp = Cρ0c0h and τu = C(ρ0c0)−1h, C being a constant to be determined from
numerical experiments.

Substituting U ′ = τRh into the large scale equation (14) results in

(µ∂tUh,Vh) + (Ai∂iUh,Vh) +

nel∑
e=1

(A>i ∂iVh, τP[(∂tUh +Ai∂iUh)− F ])Ωe
= (F ,Vh). (17)

with nel standing for the number of elements in the computational mesh and Ωe for the e-th element
domain. Equation (17) is the stabilized weak form we were looking for. Note that the first two terms
in (17) correspond to the standard Galerkin FEM approach in (8a), whereas the third one is the additional
stabilization term that facilitates using equal interpolations for the acoustic pressure and acoustic particle
velocity. As discussed at the end of Section 2.2, the inability of the Galerkin FEM to solve the wave
equation in mixed form was attributed to the fact that it was not possible to prove any bound to control
the pressure gradient and the velocity divergence. As opposed, the following bound can be proved for the
stabilized weak form (17),

τu

∫ t

0
‖∇ph‖2 ds+ τp

∫ t

0
‖∇ · uh‖2 ds

≤ C
( 1

ρ0c2
0

‖ph0‖2 + ρ0 ‖uh0‖2 + τu ‖∇ph0‖2 t+ τp ‖∇ · uh0‖2 t
)
. (18)

Therefore, the stabilized formulation can get rid off the spurious oscillations which make the Galerkin
FEM useless.

Following the same subgrid scale strategy for the Navier-Stoles equations, one can also prevent
the numerical instabilities in that equation (see e.g.,[24]). Actually, not only instabilities can be avoided
but it can also be shown that the subgrid scale stabilization terms act, in fact, as an implicit large eddy
simulation (LES) model satisfying the appropriate statistics of turbulent flows [25].

6. Numerical Results
Let us next briefly show some of the results that can be obtained by solving the equations presented in the
previous sections. In Fig. 3a we plot a vocal tract transfer function (quotient between the acoustic pressure
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(a) (b)

Figure 4 – (a) Vorticity isosurfaces shedding from the tooth-shaped obstacle. (b) Direct (blue), diffracted
(red) and total (green) sound presure contributions at a far field point.

at a point close to the mouth exit and the glottal pulse volume velocity at the glottis) postprocessed from
the solution of the irreducible wave equation (1). The VT geometry has been obtained from MRI data [20].
The formants due to plane wave propagation can be appreciated for low frequencies, as well as the large
antiresonance due to the lateral cavities between 5− 6 kHz, and the high-order modes above that range.
In Fig. 3b a spectrogram showing the evolution of formants from /a/ to /i/ for diphthong /ai/ is presented,
which has been obtained from the solution of the mixed equation (2).

In Fig. 4 we present some aerodynamic and aeroacoustics results according to the methodology
described in Section 4, for a configuration frequently used to analyze the generation of sibilants. That
consists of a rectangular duct with an input flow at the entrance and a tooth-shaped obstacle placed close
to the exit. Turbulent vortex shedding occurs past the obstacle resulting in the generation of aerodynamic
sound which is diffracted by the tooth. A snapshot of the isovorticty surfaces past the obstacle is shown
in Fig. 4a, while the direct, diffracted and total acoustic pressure contributions at a far field point are
presented in Fig. 4b. These have been computed following the approach recently presented in [14]. As
expected, the contribution from the diffracted component is the dominant one.

7. Conclusions

In this work we have made a survey of some of the equations involved in vocal tract acoustics for vowel,
diphthong and sibilant generation. The numerical difficulties encountered when approximating them by
means of the finite element method have been highlighted, and special emphasis has been put on mixed
formulations found when producing diphthongs and sibilants. The reasons for the failure of the standard
Galerkin FEM have been indicated as well as the possibility to circumvent them by resorting to subgrid
scale stabilized finite element methods.
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