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Abstract 
 

The aim of this work is to explore the nature of radiation from bending modes of a submerged tube with 

variation in mass distribution along the length of the tube. The bending modes of a fluid-loaded tube are 

initially predicted using a simple finite element shell model, where the effects of water loading are 

modelled by adding mass to that of the tube itself. The sound radiation is then predicted using an array of 

transverse dipoles whose strengths are proportional to the local cross-sectional area and vibration 

amplitude. The effects of retarded time are taken into account for directions that are not normal to the 

tube. For comparison with the semi-analytical approach, a fully coupled finite element/boundary 

element model of the fluid-loaded tube was also developed. Results from both techniques show that 

variation of the mass distribution of the fluid-loaded tube has a large impact on the radiated sound power 

and directivity of the radiated sound pressure due to low order bending modes. 

1. Introduction 

Radiation from submerged shells has been described in general papers and textbooks that form a strong 

foundation for subsequent work [1,2]. The specific case of radiation from bending modes of a free-free 

beam was considered by Junger [3]. Recent work by the authors examined the effects of changing the 

buoyancy and aspect ratio of a rigid fluid-loaded shell on sound radiation [4]. Global modes and 

radiation characteristics of a submerged shell are altered by isolation of internal masses [5]. It was 

shown by Hartnell-Beavis and Swinbanks [6] that an array of soft mounts for a flexible machinery raft 

should be distributed to match the mass distribution of the mounted structure, in order to achieve 

minimum vertical hull excitation. The total mount force in the vertical direction due to a vertical force 

applied to the raft is then the same as for a rigid structure with identical total mass and mounting 

stiffness. There is a direct analogy with radiation from submerged, flexible shells due to a given applied 

force. Sound radiation from successive bending modes of a submerged shell might be minimised by 

matching the sectional buoyancy distribution to the longitudinal mass distribution. This is analogous to 

the static design of a ship or submarine for minimum vertical shear forces across longitudinal sections. 

 In this work, a simple fluid-loaded tube with variation in longitudinal mass distribution is used to 

explore the radiated sound due to low order bending resonances. The mechanical input power, and the 

radiated sound power and directivity of the far-field sound pressure, are predicted using both a 

semi-analytical approach and a numerical approach. The input power is determined from the product of 

the rms sinusoidal applied force and the rms component of velocity that is in-phase with that force. 
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Resonance of a particular mode is taken to correspond to a local input power maximum. The maxima are 

determined accurately using high resolution frequency analysis.  

In the semi-analytical approach, the tube vibration is determined by assuming that the effective 

mass of each section of the tube is that of the tube itself plus an added mass of water.  The radiated power 

is assumed to be much less than the mechanical input power, so that vibration is controlled by structural, 

not radiation, damping.  The radiation is computed using a linear array of dipoles, where the source 

strength and phase of each dipole are derived from the operational deflection shape (ODS) of the tube 

and its local cross section. The ODS is computed using a simple finite element model of the tube 

transverse point force excitation applied at one end, where the tube mass is increased by the added mass 

of water. In the numerical approach, a fully coupled finite element/boundary element model of the fluid 

loaded tube was developed. In each model, variation in mass distribution along the length of the tube 

was considered. Predictions of the radiated sound power and directivity of the far-field sound pressure 

due to the first three successive bending mode resonances from the two approaches are compared. 

2. Model Description and Choice of Parameters 

Figure 1 shows a schematic diagram of a horizontal free-free tube with a force applied at one end in the 

vertical plane. This simulates the effect of a transverse hull force due to a propeller, transmitted via the 

propeller shaft and the pressure field in the fluid [7]. The applied end force is sinusoidal and has an 

amplitude of 1 N at radian frequency  . The tube is modelled using shell elements. 

The wavelength of underwater sound at the first bending mode of a floating or submerged hull is 

typically six times the hull length. For example, a 250m long cruise ship will have a first bending mode 

resonant frequency of about 1 Hz (1500m sound wavelength), while a submerged hull with 50m length 

may have a first bending mode frequency of about 5 Hz (300m wavelength). Submerged hulls tend to be 

stiffer in order to withstand water pressure, but also have heavier water loading. In the following analysis 

for a 45m long tube with a diameter of 1m, the material and geometric parameters for the cylinder have 

been chosen to give a first bending resonance at about 6 Hz, and are listed in Table 1. The density 
f  

and speed of sound in water 
fc  are 1000 kg/m

3
 and 1500 m/s, respectively. The density and Young’s 

modulus are chosen to ensure that the sound wavelength relative to the tube length at bending resonances 

is representative of full scale. The effects of retarded time in directions other than normal to the tube are 

then realistic. The loss factor   associated with structural damping is assumed to be 0.02 and is constant 

for the low frequency range considered here. Practical loss factors are usually higher and also tend to 

increase with frequency.  
 

 
 

 
 

 

 

 

 

 

 

Figure 1. Schematic diagram of a horizontal tube with an applied end force in the vertical plane, showing 

the chosen spherical co-ordinate system with polar angle θ and azimuth angle  
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The mass distribution along the tube is varied using the parameter  , where the tube is divided into 

three sections: 4/L , 2/L  and 4/L  long. The outer sections have mass per unit length 

)1(31  bcc mmm , while in the centre section, )1(2  bc mm , where 
bm  is the average mass per 

unit length that corresponds to neutral buoyancy. If 0 , the mass per unit length is the same in each 

section.  If 0 , the tube ends are relatively light. If 0 , the tube ends are relatively heavy. The 

distributions of mass are shown in Table 2 for the principal values of  .  

 

Table 1. Geometric and material parameters for the tube 

Parameter Value Unit 

Length 45 m  

Length of central section 22.5 m  

Length of end section 11.25 m  

Radius  0.5 m  

Thickness  0.025 m  

Young’s modulus 2.1e12 Pa  

Poisson’s ratio 0.3  

Damping loss factor 0.02  

Density for neutral buoyancy 10,111.2 3kg/m  
 

 

Table 2. Variation in mass distribution 

Central mass variation   Density ( 3kg/m ) 

 Left Central Right 

               0.4    14000 6000 14000 

               0   10000 10000 10000 

               0.4    6000 14000 6000 
 

3. Results for a Thin, Fluid-Loaded Tube 

A segment of a thin, flexible tube has an acoustic reactance corresponding to an added mass of water, 

while its acoustic resistance is that of a rigid cylinder segment having the same vibration amplitude. This 

amplitude varies along the length of the cylinder. A bending mode of a water-loaded tube has shape 

)(xw  such that 

  

0d)()( 
L

e xxwxm                                                                                                                                                    (1) 

                                                                         

)(xme  is the effective mass per unit length of the fluid-loaded tube and is the summation of the actual 

mass per unit length of the tube, )(xmc , and the added mass per unit length due to the surrounding fluid, 

)(xm f
 

 

)()()( xmxmxm fce                                                                                                                                                           (2) 

 

The added mass due to the fluid loading is given by [8] 
 

)()( 2 xaxm ff                                                                                                                                                                     (3) 

 

where )(xa  is the radius of the tube at location x along the tube. For simplicity, in this work, the radius 

of the tube is invariant along its length. 
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The radiation due to a vibrating tube segment with a rigid cross-section and unit length is that due to a 

dipole having the same volume, provided that the dimensions of the segment are small relative to the 

wavelength of underwater sound. Then, the sound pressure at large distance r and direction θ,   in Fig. 

1 due to a segment vibrating with amplitude w(x) is [3] 
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If ,90o  the total pressure, obtained by integration along the length of the tube, is proportional to 

 

0d)()(2 
L

xxwxa                                                    (5) 

 

From Eq. (3), the added mass due to fluid loading is directly proportional to the cross-sectional area of 

the tube at each point along the tube axis. Thus, the total radiation normal to the tube )90( o  for a pure 

bending mode is zero, if 
fe mm /  is independent of location x along the tube. This is equivalent to a 

statement that the axial distribution of buoyancy should match the axial distribution of mass for 

minimum sound radiation due to bending modes in the direction normal to the tube.  

4. Semi-Analytical Approach 

The sound radiation due to bending vibration of a thin tube is approximated by a linear array of 

transverse dipoles, where the dipole strength is proportional to the vibration amplitude and the 

cross-sectional area of the tube at each location and frequency [3]. If end effects are ignored, the added 

mass of water is directly proportional to the cross-sectional area of the tube at each point along it. The 

far-field radiation in any direction can be computed by taking account of retarded time. The pressure 

field due to each dipole varies as sin  where   is the angle of rotation about the longitudinal axis of the 

tube from the horizontal plane, as shown in Fig 1. The calculation of radiated sound power is then 

straightforward and results can be calculated very quickly. 

The thin tube in water is modelled as a dry tube with added mass corresponding to the mass of 

displaced water at each section. It is anticipated that the radiated sound power at bending resonances is at 

least two orders of magnitude smaller than the input power. Then, the operational deflection shape 

(ODS) of the tube at resonance is hardly affected by sound radiation. This allows the tube to be modelled 

using a simple finite element (FE) analysis. The Patran/Nastran FE model of the thin tube has 240 

longitudinal elements and 24 circumferential shell elements. The dipole strength is determined from the 

displacement of the tube axis. The ODS at each the first three bending resonances is a sequence of 

complex numbers, corresponding to displacement components that are in-phase and out-of-phase with 

the applied force. 

The complex displacement of the m
th

 element in a linear array of N elements, where each element 

has length d and radius ma , is mw . The phase difference between the contributions from adjacent dipole 

sources is cosdk f
, corresponding to a time delay between the radiated sound signals from individual 

dipole sources if o90 . The radiated far-field pressure at distance r  from the array ( Lr  ) is then 
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where 
ff ck / . The total radiated sound power from a linear array of dipole sources with varying 

amplitude can be computed semi-analytically by substituting equation (9) into the following equation 

[2,9] 
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5. Numerical Approach 

The FE mesh in the semi-analytical model was also used to represent the tube in the fully coupled finite 

element/boundary element (FE/BE) model. The surrounding fluid was now represented by the BE 

model. The FE model was created in MSC Patran/Nastran and the BE model was created in Sysnoise. 

The coupled FE/BE model was solved in Sysnoise. A total of 3276 quadrilateral shell elements were 

used at the interface between the tube and surrounding fluid, while retaining 5760 elements in the FE 

model. The same excitation force was applied at one end as in the semi-analytical model. Without 

explicit assumptions concerning dipole radiation and field characteristics, using the numerical approach, 

run times are much longer and it is more difficult to achieve convergence.  

6. Results and Discussion 

6.1 Peak input power frequencies 

Results between the two approaches are compared in what follows in terms of resonant frequencies, 

ODSs, pressure fields in the plane of the cylinder and applied force, and the total radiated sound power. 

The resonant frequencies derived from the FE model are up to 3% lower than those computed from the 

FE/BE model, suggesting that the added mass of water is reduced in the FE/BE model by end effects. 

There is a weak variation in resonant frequencies with .  The peak frequencies at the first bending 

mode are respectively 3% higher for 4.0  and 0.15% lower for 4.0  than for 0 . The 

variations at the second bending mode are smaller than 1% for the range .4.04.0    The 

variations at the third bending resonance are respectively 1.5% higher for 4.0  and 0.5% lower for 

4.0  than for 0 . 

6.2 Operational deflected shapes at peak input power  

Figures 2 and 3 show the ODSs determined at the frequencies of peak input power for the first and third 

bending modes. The second bending mode is anti-symmetric. These results are derived from the 

24 240  FE model of the tube using Patran/Nastran. They are almost identical to those derived from the 

FE/BE model. The amplitudes have been normalised to unity at the driven end for the displacement 

component that is out-of-phase with the applied force. Only the out-of-phase components are shown. 

The in-phase components are relatively small, but they lead to asymmetry of directivity patterns about 
o90 . 

6.3 Input power and radiated power 

The variations of input power and radiated sound power with frequency are shown in Fig. 4 for 

0,4.0 and .4.0  These results are derived from the fully coupled FE/BE model using 

Patran/Nastran and Sysnoise. The radiated sound power is at least 28 dB below the input power at the 

three resonant peaks, confirming that the radiated sound has negligible effect on the vibration amplitude 

at resonance. Almost all the input mechanical power is dissipated as heat, despite the low damping; the 

input power and radiated sound power are only equal when there is zero structural damping. The 

radiated sound power corresponds to that due to a dipole at low frequencies. The input power at 

resonance hardly changes with ,  but the value of   has a large effect on the radiated sound. When

0 , all three fully-resolved peaks in radiated sound power are only about 10 dB above the power 

radiated by the dipole, due to the self-cancelling effects of the uniform tube. 
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Figure 2. Operational deflection shapes at peak input power for the first bending mode, determined using 

the semi-analytical approach of the FE model with added water mass 

 

 
 

Figure 3. Operational deflection shapes at peak input power for the third bending mode, determined 

using the semi-analytical approach of the FE model with added water mass 
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Figure 4. Input and radiated power, 02.0 , determined using the fully coupled FE/BE model 

6.4 Variation of peak input power and radiated sound power with variation in mass distribution 

The variation of radiated sound power with   at the first and third resonant peaks is shown in Figs. 5 

and 6, using the dipole as a reference for radiated sound power due to a unit applied force. Results are 

shown for both the semi-analytical approach and the fully coupled numerical approach, confirming that 

the simple FE model with assumed added water mass gives almost identical results to those from the 

coupled FE/BE model.  

The peak frequencies for the first and third bending modes differ by a factor of more than five, so 

there is a marked difference in the importance of retarded time. The most striking result is at the first 

bending mode, where the radiated sound power varies by 20 dB in the range from 4.0  to 

,4.0  with a minimum for .05.0  At this minimum, the radiation is same as that due to a 

simple dipole and the resonant vibration has almost no effect on sound power radiation. At the resonant 

frequency of about 6.3 Hz, the sound wavelength is over 5 times the length of the tube, so the effects of 

retarded time are small. The third bending mode is also symmetric, but the wavelength at 34 Hz is almost 

identical to the tube length and much larger retarded time effects are anticipated. The change in radiated 

sound power with mass distribution at the third bending mode is much weaker than for the first mode, 

but the directivity now varies strongly. 

6.5 Directivity patterns at peak frequencies 

Although overall radiated sound power is the simplest overall measure of the intensity of the radiated 

sound field, the directivity of the radiated sound field can contain peaks and nulls of considerable 

practical significance. Directivity patterns in the plane of the tube and applied force for the first and third 

bending modes are shown in Figs. 7 and 8 for ,4.0 0  and +0.4. Following standard practice for 

representation of underwater noise signatures, these are presented as pressure levels at 1m from a point 

source that has the same far-field pressure distribution as the vibrating tube.  Results from both FE and 

FE/BE models are shown. The directivity patterns are not exactly symmetrical about o90  because 

the ODSs are not pure mode shapes. In particular, they include both translational and rotational rigid 
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body motions. The agreement is very good in directions of highest pressure, but larger differences 

appear for directions where radiation is weak. This is likely to be due in part to the differences and 

numerical errors in calculated peak frequencies between the semi-analytical and numerical approaches, 

which change the effects of retarded time, and in part to end effects that are present in the numerical 

FE/BE model. The values of high pressures are practically of more importance than the values of low 

pressures. The out-of-plane pressure varies as sin , where   is the angle of rotation about the tube axis 

for a given value of  .  Thus, the pressure amplitude is zero when 0180,0 . 
 

 

Figure 5. Input and radiated power  at the first bending mode, determined using both the semi-analytical 

and numerical approaches 

 

Figure 6. Input and radiated power at the third bending mode, determined using both the semi-analytical 

and numerical approaches 
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The directivity results for the first mode are close to those of an amplified dipole for 4.0  to 

4.0  with weak lobes for .0  This is the expected result when the wavelength of underwater 

sound is much greater than the length of the tube [3]. The directivity patterns show two major lobes for 

the second mode (not shown here) and three lobes for the third mode, that are particularly prominent for 

.0  In some directions, the pressure level is lower than for a simple dipole. The strong dependence on 

  for the first and third modes is clearly apparent in Figs. 7 and 8. 

 

 
 

Figure 7. Directivity of the first bending resonance, determined using both the semi-analytical and 

numerical approaches 

 

 
 

Figure 8. Directivity of the third bending resonance, determined using both the semi-analytical and 

numerical approaches 
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7. Summary 

In this work, a semi-analytical approach involving a simple finite element model and a numerical 

approach involving a fully-coupled FE/BE model of a thin fluid-loaded tube in free-free vibration due to 

an applied fluctuating force at one end, for different longitudinal mass distributions, has been presented. 

Results from the semi-analytical and numerical approaches are compared in terms of resonant 

frequencies, operational deflection shapes, pressure fields in the plane of the tube and the total radiated 

sound power. The high aspect ratio of the tube ensured that any end effects are weak. The end effects 

were modelled in the FE/BE approach but ignored in the semi-analytical approach.  

Results from the two approaches have shown almost identical predictions of the input power, 

radiated sound power and directivity of the far-field sound pressure. At very low frequencies, where the 

cylinder is rigid, underwater radiation has dipole characteristics. When the cylinder length is much less 

than a wavelength of underwater sound at a bending resonance, the directivity is similar to that of a 

simple dipole and the main effect of the resonance is to modify the dipole strength. When the wavelength 

is further reduced the effects of retarded time can have a powerful influence on directivity patterns due to 

bending mode resonances. 

Variation in longitudinal mass distribution was shown to have only a weak influence on resonant 

frequencies and input power for the first three bending resonances of the tube, but to have a large effect 

on radiated sound power and directivity patterns.  
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