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Abstract 
 

The axially short circular/elliptical cylindrical chamber is often used as a flow-reversing or straight-
flow end-chamber in a multi-pass perforated duct muffler, a typical component of a modern-day 
automotive exhaust system. However, due to its small expansion volume, such short end chambers 
yield low acoustic attenuation (expressed in terms of Transmission Loss (TL)) in the low-frequency 
range, induce a large back pressure and increasing the chamber length results in the occurrence of a 
trough (due to the first axial mode) at a lower frequency that deteriorates the TL performance. In view 
of these limitations, the use of a different geometry, namely, a rigid-wall hemispherical cavity as a 
flow-reversal end-chamber muffler is investigated for potentially enhancing the TL performance over a 
wider frequency range, especially at low frequencies. To this end, this paper analyses the TL 
performance of a hemispherical end-chamber muffler having a single end-inlet and single/double end-
outlet by means of a 3-D semi-analytical formulation based on the modal expansion of the acoustic 
field and the Green’s function approach. The 3-D acoustic field inside the rigid-wall hemispherical 
end-chamber is expressed in terms of the orthogonal modal functions. The hemispherical end-chamber 
muffler system is characterised using the uniform piston-driven model in terms of the impedance [Z] 
matrix parameters obtained by computing the average of the 3-D Green’s function over the surface 
area of the ports which are modelled as rigid pistons. The TL graphs computed by using the 3-D semi-
analytical formulation are found to be in an excellent agreement with that obtained from the 3-D FEA, 
thereby validating the technique used here. Furthermore, the 3-D modal expansion method enables one 
to take into account, the relative polar angular location between the ports and also determine their 
optimal radial offset distance (corresponding to appropriate pressure nodes on the end face) to obtain a 
broadband TL performance. A comparison of the TL performance of the optimised hemispherical end-
chamber muffler with that of an equivalent circular end-chamber having an equal volume demonstrates 
a significantly higher frequency range over which a broadband attenuation is obtained by using the 
hemispherical cavity. Similarly, a comparison with the TL graph of an equivalent axially short circular 
end-chamber indicates that the former exhibits higher attenuation in the low-frequency range. 
 

1. Introduction 
 

The circular and elliptical cylindrical flow-reversal and straight-flow expansion chamber are often 
used as end-chamber in a multi-pass perforated duct muffler [1] which is a typical component of a 
modern-day automotive exhaust system. Due to constraints on overall size of the multi-pass perforated 
muffler system, axially short end-chambers are used [1-3]. The 1-D transverse plane wave approach 
[2, 3] is used to analyse the Transmission Loss (TL) performance of such short elliptical (circular) 
chamber by considering wave propagation along its major-axis (or along a diameter) wherein the end 
inlet/outlet ports are located on the major-axis (or along the same diameter). It is noted that Selamet 
and Ji [4] had earlier presented an equivalent 1-D diametral plane wave approach to analyse short 
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circular chambers. On the basis of the 1-D transverse plane wave approach, it was found that a 
configuration having an end-centred inlet/outlet and end-offset outlet/inlet located on the 
same/opposite end face exhibited a peak in the TL spectrum at the resonance frequency of the (1, 1) 
even mode and (1, 0) mode of the elliptical and circular chambers, respectively, resulting in broadband 
attenuation up to the cut-on frequency of next higher-order transverse mode [1]. 

Mimani [5] used a 3-D semi-analytical formulation based on the modal expansion and the 
Green’s function method to obtain optimal location of the end-inlet and end-outlet ports for axially 
short elliptical/circular end-chambers which yield a broadband attenuation performance of over a much 
wider frequency range that is tabulated in Munjal [1]. In particular, for an elliptical chamber, it was 
shown that one of the end-offset ports should be located on the major-axis on the pressure node of the 
(2, 1) even mode whilst the other end port should be located on the minor-axis on the pressure node of 
the (0, 2) even mode. For obtaining a broadband TL performance for a circular chamber, an end-
centred port and end-offset port that is located on the pressure node of the (0, 1) radial mode is 
recommended. However, it is observed that regardless of the use of 1-D or 3-D approach for obtaining 
broadband TL performance, such short chambers yield low attenuation due to its small expansion 
volume. Furthermore, an increase in the chamber length L whilst using optimal end port location does 
not necessarily improve the TL performance because the possible occurrence of a trough due to the 
first axial mode [6, 7] at lower frequency leads to breakdown of broadband attenuation characteristics.  

In light of the background provided above, this paper investigates the use of an end-chamber 
with a completely different geometry, namely, a rigid-wall hemispherical cavity as a flow-reversal 
end-chamber muffler for improving the overall TL performance, especially at low frequencies. Figures 
1(a) and (b) show schematics illustrating the potential use of hemispherical end-chambers in multi-
pass perforated muffler systems. The well-known modal expansion technique and the 3-D Green’s 
function approach previously used to analyse the TL performance of circular and elliptical cylindrical 
chamber muffler [8-12], rectangular plenum chamber [13, 14] and spherical chamber [15] is employed 
in this work to characterise and obtain the TL performance of a hemispherical end-chamber.   
 

 
 

Figure 1. A schematic illustrating the possible use of hemispherical end-chambers in multi-pass 
perforated duct muffler system (a) 3-duct-single-reversal system and (b) 4-duct system with an end-

chamber having three end ports and one side port. 
 

 This paper is organised as follows. Section 2 presents the theoretical formulation for 
characterising a multi-port rigid-wall hemispherical end-chamber having ports located on end face 
using a 3-D semi-analytical approach based on the modal expansion and the Green’s function method. 
Section 3 presents the TL graphs for Single-Inlet and Single-Outlet (SISO) and Single-Inlet and 
Double-Outlet (SIDO) hemispherical end-chamber configurations obtained using the 3-D semi-
analytical approach, compares the results with 3-D FEA prediction, analyses the effect of radial and 
relative polar angular location of end ports and compares the results with that of an equivalent end-
inlet/end-outlet circular end-chamber configuration. The paper is concluded in Section 4 wherein 
hemispherical end-chamber configurations exhibiting a broadband TL performance are mentioned. 
 

2. Theoretical Formulation  
 

2.1 Characterisation of a single-inlet and single/multiple-outlet muffler 
 

A multi-port chamber having N M  ports denoted by P1, P2,…, PN +M  is characterised by means of an 
impedance [Z] matrix representation shown hereunder [16].   
 

       1 1 1 1... ... ... ... ,T T
N N N M N N N MN M N Mp p p p v v v v     

 Z                                      (1) 
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The acoustic pressure (Pa) and mass-velocity  3kg m  at the ports P1, P2,…, PN+M  of the N+M 

port system are denoted by  1 1... ...N N N Mp p p p   and  1 1... ... ,N N N Mv v v v   respectively. It 
is noted that direction of the mass-velocity is considered positive looking into the system and a 
harmonic time-dependence is assumed so that ωj t

i ip p e  and ω ,j t
i iv v e  i =1, 2,…, N+M. 

Furthermore, 1,j    t denotes time (in seconds),   is the excitation angular frequency  1radian s  
given by 2 ,f where f  is the frequency in Hz. In the ensuing subsection, a multi-port hemispherical 
end-chamber having N M  end ports is characterised using the uniform piston-driven model via the 
3-D Green’s function approach in terms of the [Z] matrix representation. It is noted that walls of the 
hemispherical end-chamber are considered rigid (with no absorptive linings), therefore, a conservative 
system is being considered [3]. Furthermore, a stationary medium, i.e., a zero mean flow is assumed 
implying that the hemispherical expansion chamber satisfies the principle of acoustic reciprocity [17].   
 
2.2 Acoustic pressure field in a rigid-wall hemispherical chamber: Solution of the 3-D  
      homogeneous Helmholtz equation  
 
The 3-D acoustic field in a hemispherical chamber (cavity) is obtained as the solution of the 3-D 
homogeneous Helmholtz equation in spherical polar co-ordinates given by [15, 18] 
 

   
2

2 2 2 2
0 2 2 2

1 1 10,   sin ,
sin sin

k p r
r r r
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                          
                                    (3, 4) 

 

where r is the radial co-ordinate,   and   are polar and azimuthal angular co-ordinates, respectively, 

0 0k c is the excitation wavenumber and 0c  denotes the sound speed. The separation of acoustic 
pressure field         ΦΘ,, rRrp   yields the following ordinary differential equations [18] 
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         (5-7) 

governing wave propagation along the azimuthal, polar angular and radial directions, respectively. In 
Eqs. (5-7),   and   are separation constants where  2 1 .     It is noted that the domain given by 

     00, 0,  0,  r R          spans the rigid-wall hemispherical chamber where 0R  denotes the 
radius of the hemispherical chamber. The acoustic pressure field must satisfy the rigid-wall boundary 
condition along the azimuthal direction [18], i.e.,  
 

   
0 0 0 0 0 0  0     0   

Φ Φ1 1 0    0,
sin sin

j p j pu
k ρ c r k ρ c r

     

 
        

     
              

        (8, 9) 

 

where u is the acoustic velocity component along the azimuthal direction and 0ρ  is the ambient 

density. Substituting the general solution of Eq. (5) given by   1 2Φ  = cos sinC C    in Eqs. (8) 

and (9) yields 0,  1,  2,...m   and   1Φ  = cos ,C m   where 1C  and 2C  are arbitrary constants. 
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Furthermore, since the range of polar angle  0,  ,   i.e., it includes both poles, it is required to take 
n = 0, 1, 2,…, (positive integer values) in Eq. (6), which implies that its complete solution is given by 
 

     3 4Θ cos cos ,    .m m
n nC P C Q m n                                                                                           (10) 

 

where 3C  and 4C  are arbitrary constants,  m
nP   and  m

nQ   are the Associated Legendre functions of 

the first and second kind, respectively, of degree n and order m, see Refs. [18, 19]. Since,  cosm
nQ   

is singular at the poles, it does not feature in the polar angular solution and Eq. (10) then simplifies as 
   3Θ cos .m

nC P   The solution of spherical wave equation given by Eq. (7) is given by  

     5 0 6 0= ,n nR r C j k r C n k r                                                                                                               (11) 

where 5C  and 6C  are arbitrary constants,  nj   and  nn   are spherical Bessel and Neumann 

functions, respectively, of order n. Since  nn   is singular at the origin that is part of the hemispherical 
domain, it does not feature in the radial solution [18, 19] and Eq. (11) then simplifies as 
   5 0= .nR r C j k r  Rigid-wall boundary condition is imposed along the radial direction by setting the 

derivative of spherical Bessel function to zero at the hemispherical chamber surface, i.e., 
 

0

0
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
 yielding the non-dimensional resonance frequencies nl  given by  
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 It is noted that nl  for hemispherical chamber are identical with those of a spherical chamber 
[15, 18]. Table 1 lists the first 10 roots of the derivative of the first nine spherical Bessel functions 
orders n = 0, 1, 2,…, 8. 
 

Table 1. Roots of the derivative of the spherical Bessel function (rigid-wall modes) 

0nl  0n  1n  2n  3n  4n  5n  6n  7n  8n  
1l  0.0000 2.0816 3.3421 4.5141 5.6467 6.7565 7.8511 8.9348 10.0104 
2l  4.4934 5.9404 7.2899 8.5838 9.8405 11.0702 12.2793 13.4720 14.6513 
3l  7.7252 9.2058 10.6139 11.9727 13.2956 14.5906 15.8632 17.1175 18.3563 
4l  10.9041 12.4044 13.8461 15.2445 16.6094 17.9472 19.2627 20.5594 21.8400 
5l  14.0662 15.5792 17.0429 18.4682 19.8624 21.2311 22.5781 23.9064 25.2187 
6l  17.2208 18.7427 20.2219 21.6666 23.0828 24.4748 25.8461 27.1992 28.5365 
7l  20.3713 21.8997 23.3905 24.8501 26.2833 27.6937 29.0844 30.4575 31.8151 
8l  23.5195 25.0528 26.5526 28.0239 29.4706 30.8960 32.3025 33.6922 35.0668 
9l  26.6661 28.2034 29.7103 31.1910 32.6489 34.0866 35.5063 36.9099 38.2989 

10l  29.8116 31.3521 32.8649 34.3534 35.8205 37.2686 38.6996 40.1151 41.5164 
 
 The 3-D acoustic field inside the rigid-wall hemispherical chamber is therefore, given by  
 

     , , 
  1, 2,...   0, 1, 2,...   0, 1, 2,... 0
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   
                                       (13) 

where , , l n mA  denotes arbitrary constants.  
 

2.3 Acoustic pressure response expressed as Green’s function: Point-source modelling  

The acoustic pressure response (modelling the inlet port as a point-source) is obtained in terms of the 
Green’s function solution of the 3-D inhomogeneous Helmholtz equation shown as follows.  
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where 0Q  is the volume flow-rate  3 1m s  due to point-source port,  , ,S S Sr   and  , ,R R Rr   are the 
co-ordinates of the centre of the source and receiver ports, respectively, whilst 
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denotes the integrals of the square of the product of a particular set of orthogonal modal functions 
defined over the hemispherical chamber volume, 1m   for 0m   and 2m   for 0.m   It is noted 
that the radial part of the integral in Eq. (15) is evaluated analytically as shown below.    
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The Green’s function for a rigid-wall hemispherical obtained in Eq. (14) is identical with that of 
a rigid-wall spherical chamber [15] except for the absence of sin m  term in the case of hemispherical 
chamber. Consequently, unlike the spherical chamber, the 3-D acoustic pressure field inside a 
hemispherical chamber is not symmetric along the azimuthal direction; rather, in general, it depends on 
the azimuthal modal function cos .m  

 

2.4 Acoustic pressure response due to an end port based on the uniform piston-driven model  

The mathematically more accurate uniform piston-driven model (in comparison to the point-
source model) is used to obtain the mutual-impedance EiEiZ  and cross-impedance EjEiZ  parameters for 
characterising the hemispherical chamber having an end-inlet and end-outlet(s) shown as follows. 
 

(a) Source and Receiver end ports both co-incident  
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(b) Source and Receiver end ports centred at different locations on the end face 
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where     1
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The mathematical form of the integral of the Green’s function over the end ports in Eqs. (17-19) 
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as well as the effect of port location on the propagation/suppression of certain modes on the [Z] matrix 
parameters are discussed in Ref. [5].   

 

2.5 Computation of TL performance  
 
An expression for TL performance of a Single-Inlet and Single/Multiple-Outlet (SISO/SIMO) system 
is obtained in terms of the scattering  S  matrix parameters. To this end, the relation between the 
scattering  S matrix and the  Z matrix is first presented [11, 15, 16].   

          
1 11 1 1

1 1   2 .M M
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               S Z Y Ι Z Y I I Z Y Ι                                                      (20) 

 
In Eq. (20), the number of inlet ports N = 1, I is the identity matrix and [Y] is a diagonal matrix 

consisting of the characteristic impedances of the ports. It is assumed that the ports are acoustically 
compact, i.e., their diameter is much smaller compared to the shortest wavelength of interest (to 
automotive muffler designer) so that only planar waves propagate. Anechoic termination is imposed at 
M outlet ports following which the TL expression is obtained for a general SIMO system given by [16] 
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                                                    (21) 

 The TL expression for a SIDO system is obtained by setting M = 2 in Eq. (21) and for the case of 
a SISO system, the TL expression is given by [10, 11, 15, 16] 
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                                              (22) 

 

3. Results, Analysis and Formulation of Design Guidelines 
 
3.1 Single end-inlet and single end-outlet configuration  
 
Figure 2(a) shows the orthogonal views of a 2-port hemispherical end-chamber having an end-inlet and 
end-outlet port and Fig. 2(b) shows the 3-D view of this configuration. Without loss of generality, the 
polar angular location of the centre of the end port 1 is taken as 1E = 0 whilst the polar angular 
location of the centre of end port 2 (with respect to end port 1) is denoted by 12.  It is noted that half of 
the cross-section of end port 1 is located on the azimuthal plane 0   while the remaining half is 
located on    plane. The offset distances of ports 1 and 2 are denoted by 1  and ,2  respectively. 
 

 
Figure 2. A hemispherical end-chamber muffler having a single end-inlet port 1 and a single end-outlet 

port 2: (a) Orthogonal projections and (b) 3-D view. 
 

 In the ensuing TL graphs, the radius R0 of the hemispherical end-chamber is taken as 125 mm, 
the port diameters are considered equal and taken as 40 mm and the sound speed 1

0 343.14 m s .c    It 
is noted that the first 10 orders of the spherical Bessel function, the first 10 resonance frequencies 
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(roots corresponding to the rigid-wall modes) of each order, n = 0, 1,…,10 and l = 1, 2,…,10 is 
considered in the Green’s function response given by Eq. (14). Furthermore, unlike a spherical 
chamber [15], the Associated Legendre functions of order   1,2,...,m n are also considered in the 
modal solution. The truncation of the modal solution to these first few modes ensures a good 
convergence of the acoustic pressure response due to the uniform piston-driven model.  
 Figure 3(a) compares the TL performance of the hemispherical end-chamber configuration 
having an end-centred inlet port 1, i.e., 1 0   and an end-offset outlet port 2 centred on the pressure 
node of the (0, 2) radial mode at 2 00.6992 87.39 mmR   obtained using the 3-D semi-analytical 
formulation with 3-D FEA predictions. It is observed from Fig. 3(a) that both 3-D semi-analytical 
approach and 3-D FEA are in a reasonably good agreement for almost the entire frequency range, 
thereby validating the 3-D semi-analytical model presented here.  

 

 
 

Figure 3. (a) Comparison of the TL performance of hemispherical end-chamber configuration shown 
in Fig. 2 with R0 = 125 mm, 1 0,  2 87.39 mm,  d0 = 40 mm obtained by the 3-D semi-analytical 
formulation, 3-D FEA and 1-D transverse plane-wave approach. (b) Effect of relative polar angular 
location 12  between center of the end ports 1 and 2 on the TL of the configuration shown in Fig. 2. 

 

 It is however, noted that a slight deviation is observed near 2000 Hz in the TL graph predicted by 
both 3-D approaches. Nonetheless, both analytical and numerical methods indicate a broadband 
attenuation performance throughout the frequency range which is explained on the basis of 
excitation/suppression of rigid-wall modes and the  Z matrix parameters. To this end, it is noted that 
due to the centred  1 0  location of end port 1, Z11, Z21 (and Z12) is finite at the resonance frequency 

of  ,  n l modes where 0,  1,  2,...n n  and 1,  2,...l  because only the purely spherical modes have a 
non-zero contribution in these  Z  parameters. The self-impedance parameter Z22 due to end port 2, 
however, tends to infinity near the aforementioned resonance frequencies which signify that the TL 
also tends to infinity; thereby a peak is observed which effectively nullifies the trough at these 
resonance frequencies. Furthermore, the self-impedance parameter Z22 as well as the mutual-
impedance parameters Z21 and Z12 are finite at the resonance frequency of the (0, 2) mode as the end 
port 2 is centred on the corresponding pressure node whilst Z11 tends to infinity. Therefore, based on 
the foregoing argument, the occurrence of peak at the resonance frequency of (0, 2) mode may be 
explained. In fact, it is worth mentioning that a broadband attenuation of this configuration over the 
frequency range between 1700 Hz to 2400 Hz is due to the optimal offset radial location of end port 2, 
as a result of which the deteriorating influence of the (0, 2) mode on the TL is nullified. For any other 
offset location, one would observe a trough near the (0, 2) mode leading to the breakdown of the 
broadband attenuation behaviour.  
 The TL performance of this end-centred inlet and end-offset outlet hemispherical end-chamber 
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configuration is also computed using the 1-D transverse plane wave analysis [1, 2] by considering 
wave propagation only along the z direction by modelling the chamber as a duct with gradually 
varying cross-section given by  2

02 5.0)( zzRzS    where z is measured from the top of the 
chamber. It is observed from Fig. 3(a) that the 1-D transverse plane wave analysis is in a satisfactory 
agreement with the 3-D approaches up to frequencies slightly less than the resonance frequency of the 
(1, 1) mode beyond which the 1-D approach fails as substantial deviations are indicated from the more 
realistic    3-D wave model. Nevertheless, the 1-D transverse plane wave analysis successfully explains 
that the primary nature of wave propagation in end-inlet/end-outlet hemispherical chambers is along 
the z direction up to frequency less than the resonance frequency of (1, 1) mode. 
 Figure 3(b) presents the results of a parametric study on the effect of relative polar angular 
location between end ports of hemispherical end-chamber muffler on its TL performance. To this end, 
the centre of both end ports is located at equal offset distances on the pressure node of (0, 2) mode, i.e., 
at 1 2 00.6992 87.39 mmR    whilst their relative polar angular location is varied:  12 2,  .    
It is observed from Fig. 3(b) that TL performance for configuration with 12 2   is similar to that of 
a spherical chamber with the same relative polar angle between ports; it exhibits peaks at the resonance 
frequency of the odd modes whilst sharp peaks at the resonance frequency of even modes are unable to 
nullify the trough at that frequency, resulting in a somewhat broadband attenuation up to the (2, 1) 
mode. On the other hand, the TL performance for configuration with 12   resembles that of a 
simple expansion chamber [1]; it is characterised by regular occurrence of frequency attenuation 
domes and troughs up to the onset of (1, 2) mode.   
 Figure 4 compares the TL performance of the hemispherical end-chamber muffler having an 
end-centred inlet port 1, i.e., 1 0   and end-offset outlet port 2 located at 2 00.6992R   (analysed 
above) with two different equivalent configurations of circular cylindrical end-chamber both having an 
end-centred inlet port 1, i.e., 1 0   and end-offset outlet port 2 located at 2 00.6276R   (the pressure 
node of (0, 1) radial mode, see Ref. [8]) and the same radius 0 125 mm.R  The first equivalent circular 
chamber has the same volume as hemispherical chamber implying that its chamber length 

 02 3,L R whilst the second equivalent circular chamber has 0  0.4478L R  so that resonance 
frequency of the first axial mode is co-incident with that of the (0, 2) mode of the circular chamber.  
  

 
Figure 4. Comparison of the TL performance of the hemispherical end-chamber configuration shown 
in Fig. 2 having R0 = 125 mm, 1 0,  2 87.39 mm,  d0 = 40 mm with an end-centered-inlet and end-

offset-outlet  2 78.45 mm  circular cylindrical flow-reversal end-chamber muffler of equal 

radius 0R and port diameters having (a) an equal volume, implying 02 3L R  and (b)  0, 2 0.
cL R    

 

 It is observed from Fig. 4 that the TL performance of both hemispherical and equal-volume 
circular cylindrical chamber is nearly identical up the low-frequency limit, i.e., up to the resonance 
frequency of (1, 1) mode which can be explained on the basis of lumped-system analysis beyond 
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which substantial deviation is observed. In particular, it is noted that while the hemispherical end-
chamber exhibits a broadband attenuation performance (above 20 dB approximately) over the entire 
frequency range considered, the equal-volume circular chamber exhibits a trough at the resonance 
frequency of the first axial mode, i.e., at  0 2 2058.8 Hz,f c L   leading to the breakdown of the 
broadband attenuation behaviour. On the other hand, the axially short circular chamber exhibits 
broadband attenuation behaviour over a much wider frequency range, precisely, up to the resonance 
frequency of (0, 3) radial mode; however, in comparison to the hemispherical chamber, it yields a 
relatively low attenuation in the low-frequency range due to its smaller volume. The aforementioned 
discussion therefore, indicates that a circular cylindrical end-chamber may be potentially replaced by a 
hemispherical end-chamber of equal radius with a view to achieve better attenuation performance. 

 
3.2 Single end-inlet and double end-outlet configuration 
 
Figure 5(a) shows the orthogonal views of a 3-port hemispherical end-chamber having end ports 
denoted by 1, 2 and 3 whilst Fig. 5(b) shows its 3-D view. The end port 1 is centred, i.e., 1 0   while 
the centre of end ports 2 and 3 are offset at equal distances given by 2 3 00.6992 ,R    respectively, 
from the center of the hemisphere. Without loss of generality, the polar angular location of the centre 
of end port 2 is taken as 2E = 0 whilst the polar angular location of the centre of port 3 (with respect 
to port 2) is given by 23.   

 
Figure 5. A hemispherical end-chamber muffler having a single end-inlet port and double end-outlet 

ports: (a) Orthogonal projections and (b) 3-D view. 
 
 The motivation underlying the analysis of TL performance of a SIDO hemispherical end-
chamber is to examine the effect of variation in the relative polar angular location 23  between the end 
ports 2 and 3 and in particular, study the effect of interchanging the location of inlet and outlet ports. 
To this end, two different configurations of the 3-port chamber are considered: (a) 223    and (b) 

23   and the TL graphs for these SIDO configurations are presented in Figs. 6(a) and (b).  
 Figures 6(a) and (b) indicate that a broadband TL performance is obtained when the end-centred 
port 1 is taken as the inlet regardless of the relative polar angular location 23  between the end-outlet 
ports 2 and 3. Furthermore, the broadband TL graph shown in Fig. 6(a) is qualitatively similar to that 
shown in Fig. 3(a), the only difference between the SIDO and SISO test-cases is that the former yields 
less attenuation due its smaller effective expansion ratio. It is also observed from Figs. 6(a) and (b) that 
the TL graph is significantly altered by changing the location of inlet and outlet ports [11, 15]; in 
comparison to the end-centred inlet configuration, the end-offset inlet configuration does not exhibit a 
broadband TL performance, rather its TL graph resembles that of a spherical chamber [15] with 
relative polar angle equal to 2  or an expansion chamber with gradually varying cross-sectional area. 
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Figure 6. TL performance of the single end inlet port and double end-outlet hemispherical end-
chamber configuration shown in Fig. 5 having R0 = 125 mm, d1 = d2 = d3 = d0 = 40 mm, 

,01   32  87.40 mm and 23  (a) 2  and (b) .  
 

4. Conclusions 
 

This paper has analysed the Transmission Loss (TL) performance of a hemispherical end-chamber 
muffler having a single end-inlet and single/double end-outlet by means of a 3-D semi-analytical 
uniform piston-driven model based on the modal expansion and Green’s function approach. The 3-D 
formulation enables one to take into account, the radial, polar and azimuthal angular location of the 
end ports on computation of the  Z matrix parameters and thence, explain the TL characteristics (such 
as peaks and troughs) on the basis of excitation/suppression of rigid-wall modes. The TL performance 
predicted by the 3-D semi-analytical approach is shown to be in an excellent agreement with that 
obtained using 3-D FEA simulations, thereby validating the approach presented here. 

A parametric study on the effect of radial and polar angular location of end ports was conducted 
resulting in the formulation of guidelines (in terms of optimal port location) towards designing single 
end-inlet and single/double end-outlet hemispherical end-chamber mufflers exhibiting a broadband TL 
performance that are indicated as follows.  
(a) SISO configuration with end-centred inlet/outlet port 1, i.e., 1 0   and end-offset outlet/inlet port 2 
located at a radial distance 2 00.6992R   from the centre on the pressure node of the (0, 2) mode. A 
comparison of the TL performance of this configuration with that of an equivalent circular cylindrical 
flow-reversal end-chamber having the same radius 0R  and equal volume 0V  indicates that former 
yields a broadband attenuation up to much higher frequency range, thereby suggesting that use of a 
hemispherical cavity as an end-chamber in the multi-pass perforated muffler system is an attractive 
alternative to the conventionally used circular/elliptical cylindrical end-chamber [1-3].  
(b) SISO configuration with end-offset inlet port 1 and end-offset outlet port 2 with the relative polar 
angular location of the ports given by 12 2.   A broadband TL performance is obtained up to the 
resonance frequency of the (2, 1) mode. 
(c) SIDO configuration with an end-centred inlet port E1, i.e., 1 0E   and end-offset outlet ports E2 
and E3 both located at the same radial distance 2 00.6992E R   from the centre on the pressure node of 
the (0, 2) mode. Broadband TL is obtained regardless of the relative polar angular location 2 3.E E   
(d) SIDO configuration with an end-offset inlet port 1 and end-offset outlet ports 2 and 3 such that 
relative polar angle 1 2 1 3 2.E E E E     (The TL graph for this configuration is not presented here.)  
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