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ABSTRACT 

In the present paper, the role of the flow pulsation in the scale-dependent complex vibration of ultrasmall tubes 
under the action of an axial pretention is investigated. The main focus of the present study is on the chaotic 
vibration response of the ultrasmall system. The effect of the internal energy friction is also considered via help of 
the Kelvin-Voigt model. In practical applications, tubes and pipes are usually surrounded by an elastic foundation. 
Therefore, in the current study, it is assumed that the ultrasmall tube is embedded in a nonlinear elastic medium. 
The theory of couple stress as well as the theory of an Euler-Bernoulli beam are utilised to develop a modified 
scale-dependent model. An energy/work principle is also utilised for the derivation of the energy potential, motion 
energy and the external work as well as the equations of motions. Employing Galerkin’s procedure gives the 
discretised version of the differential equations of the pulsatile fluid-conveying ultrasmall tube embedded in a 
nonlinear elastic foundation. Finally, application of a time-integration scheme gives the nonlinear characteristics 
of the complex vibration. It is found that the flow pulsation has a significant role in the complex vibrations of 
ultrasmall tubes in the super critical regime. Various types of transverse motions are found depending on the 
amplitude of flow pulsation. 

1 INTRODUCTION 

In ultrasmall fluid-conveying systems such as microfluidics- and nanofluidics-based devices (Warkiani et al. 2014), 
solid structures such as microscale/nanoscale tubes and plates interact with the fluid part. In practical situations, 
the velocity of the flowing fluid can change over time. In addition, the mixing of microfluid flows is troublesome as 
at microscale levels, Reynolds numbers are often low. It has recently been reported that creating pulsatile fluid 
flows is one way of mixing microfluid flows (Cheaib et al. 2016). The source of the pulsatile fluid flow at microscale 
levels can be a micropump or the nature of the microfluid flow itself. Taking into account this flow pulsation is 
important to better these systems since it can affect mechanical characteristics. Due to the fact that the mechan-
ical behaviour of ultrasmall structures is size-dependent, modified continuum models have been introduced in the 
literature by amending the classical continuum mechanics (Şimşek 2010, Aydogdu 2015, Murmu, Adhikari, and 
Wang 2011, Ke et al. 2012, Hadi, Nejad, and Hosseini 2018, Farajpour et al. 2018).  In the present analysis, the 
modified couple stress theory (MCST) is employed as the modified continuum model.  

In recent years, modified continuum models have been utilised in order to study the mechanics of fluid-conveying 
ultrasmall tubes. Wang (Wang 2010) examined the linear vibrational response of ultrasmall tubes conveying fluid 
flow with a constant velocity using the MCST. Kural and Özkaya (Kural and Özkaya 2017) also analysed the 
vibrational response of ultrasmall fluid-conveying pipes surrounded by a linear elastic medium; they explored the 
influence of the elastic medium on the vibrational response. In addition, in a study done by Hosseini and Bahaadini 
(Hosseini and Bahaadini 2016), a modified continuum model was proposed for the instability analysis of cantilever 
microtubes conveying fluid based on a strain gradient theory. The nonlinear vibrational response of fluid-convey-
ing tubes at microscales was also investigated by Dehrouyeh-Semnani et al. (Dehrouyeh-Semnani, Nikkhah-
Bahrami, and Yazdi 2017) via a modified couple stress model. In addition to microscale pipes conveying fluid, the 
mechanical characteristics of fluid-conveying nanoscale tubes have been also examined by developing nonlocal 
continuum models (Bahaadini and Hosseini 2016, Ansari et al. 2016, Liu, Lv, and Li 2017). The influence of a 
geometrical imperfection on the nonlinear buckling of microscale fluid-conveying pipes was examined by 
Dehrouyeh-Semnani et al. (Dehrouyeh-Semnani, Nikkhah-Bahrami, and Yazdi 2017). Furthermore, Tang et al. 
(Tang et al. 2014) applied the MCST, as a size-dependent theory, to curved tubes containing fluid flow at mi-
croscales; they found that the vibration characteristics of curved microtubes are substantially different from those 
of straight ones. The mechanical behaviour of nonlocal strain gradient pipes conveying fluid (Li et al. 2016) and 
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the vibration of piezoelectric inhomogeneous micropipes conveying fluid (Hosseini, Maryam, and Bahaadini 2017) 
have been recently studied using modified continuum models.  

In all of the studies mentioned above, the fluid velocity is assumed to be constant. Nonetheless, in practical situ-
ations, the speed of the flowing fluid can change over time. In this study, the influence of the flow pulsation on the 
size-dependent complex vibrational response of ultrasmall tubes subject to an axial pretention is analysed. The 
emphasis is placed on the chaotic vibration response of the ultrasmall tube. The MCST is utilised to capture size 
effects on the chaotic vibration response. Moreover, the influence of the internal energy friction is captured via 
the Kelvin-Voigt model. The ultrasmall tube is surrounded by a nonlinear elastic medium. An energy/work principle 
is employed to derive the governing differential equations of the ultrasmall tube. The influences of the amplitude 
of the fluid velocity as well as the mean value of the fluid velocity on the size-dependent complex vibration are 
discussed.  

2 SIZE-DEPENDENT NONLINEAR MODELLING 

A viscoelastic tube conveying pulsatile flow at ultrasmall levels is shown in Fig. 1. The viscoelastic tube is resting 
on a nonlinear elastic medium. The ultrasmall tube is of cross-sectional area A, length L, internal radius Ri, and 
external radius Ro. The nonlinear elastic medium is characterised by k1 (the linear stiffness coefficient) and k2 (the 
nonlinear stiffness coefficient). An axial pretention denoted by T0 is also applied to the ultrasmall tube. The Young 

modulus, the viscosity constant and Poisson’s ratio of the tube are denoted by E, visc  and  , respectively. More-

over, in the present formulation, l denotes the scale parameter. 

 
Figure 1: An ultrasmall tube conveying pulsatile flow resting on an elastic medium. 

Using the Kelvin-Voigt theory, the stress-strain equation of ultrasmall tubes can be written as 


   


   


( ) ( ) ,xx

xx xx el xx vis xx visE c
t

   (1) 

where  xx ,  ( )xx el ,  ( )xx vis  and  xx  represent the axial stress, the elastic stress, the viscoelastic stress and the 

strain, respectively (Wang 2010, Farajpour et al., 2018). The axial strain of the ultrasmall tube is expressed as 
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in which u, v and   denote the axial mid-plane displacement, the transverse mid-plane displacement and the 

cross-section rotation of the tube. In a similar way, one can write the deviatoric couple stresses (mij) as follows 
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in which  l  2 1E E  and  l  2 1vis visc c . In Eq. (3), ( )ij elm  and ( )ij vism  stand for the elastic and viscous 

parts of mij, respectively. Moreover,  xy  and yz  are symmetric rotation gradient components determined as              
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The energy/work principle can be written as 

       
2
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Here Tke, Upe, Usp and Wvis stand for the kinetic energy, the potential energy, the elastic energy of the elastic 
medium and the work performed by viscoelastic stresses, respectively. The fluid velocity is assumed as 

  0 1 cos ,fU U U t    (6)  

where  f , U0 and Uf are the pulsation frequency, the mean and amplitude of the fluid velocity, respectively. 

For developing a numerical solution, the following dimensionless parameters are employed 
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Here M, m and I stand for the mass per unit length of the fluid, the mass per unit length of the tube and the cross-
sectional moment of inertia, respectively. Let us assume that both ends of the ultrasmall tube are clamped. These 
end conditions are assumed as in practical situations, especially in microfluidics-based devices, ultrasmall tubes 
are usually fixed at their ends. Using Galerkin’s approach, the displacement components are as follows 
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where ( l , l ) and ( mq , mr ) represent the shape functions and generalised coordinates, respectively. Formu-

lating energy and work terms in Eq. (5), and then applying Eqs. (6)-(8), the discretised governing equations of the 
ultrasmall tube are derived. For the transverse motion, one obtains 
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( )k
ijI  and 

( )k
ijJ  are obtained by implementing the Galerkin approach. For solving the ordinary differential equations 

described by Eq. (9), a continuation method is finally used. It should be noticed that in the present analysis, 
numerical calculations are performed using 16 shape functions. The present model captures the size influence 
via incorporating the scale parameter of the couple stress theory. 

 

3 NUMERICAL RESULTS  

For numerical results, the geometrical properties of the viscoelastic ultrasmall tube are taken as Ri=17.5 µm, 
Ro=25 µm, and L/Ro = 280. Moreover, the system material properties are assumed as ν=0.38 and E=1.44 GPa, 
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ρt=1220 kg/m3 and ρf =1000 kg/m3 (Şimşek and Reddy 2013) in which ρ denotes the mass density; ‘‘t’’ and ‘‘f’’ 
denote the tube and fluid, respectively. These material properties are often employed for beams at microscale 

levels. The dimensionless parameters are  =140,  =6.0, 
visc =0.0003, K1=K2=80, β=0.4406,  =0.4821,  f

/ω1=2 and  g =2.1047×105. Unless noted otherwise, the transverse deflection is plotted at  =0.45. The non-

dimensional critical fluid velocity related to the divergence of the fluid-conveying ultrasmall tube is obtained as 
8.4001.  

The bifurcation plots of Poincaré sections of ultrasmall viscoelastic tubes containing pulsatile flowing fluid for a 
mean velocity a bit higher than the critical value (uf0=8.5 > 8.4001) are plotted in Fig. 2. The ultrasmall system is 
in the supercritical regime. The first natural frequency of ultrasmall tubes containing pulsatile flowing fluid is ob-
tained as ω1= 5.29. From this figure, it can be concluded that the size-dependent nonlinear motion of the tube is 
of period-2 type for small values of uf1. As the amplitude of the fluid velocity further increases, a wide range of 
distinct motion types such as period-1, period-2, period-6 and chaos is seen in the nonlinear complex vibrational 
response of the viscoelastic ultrasmall tube under longitudinal pretension. The first chaotic region starts at around 
uf1=0.84, and the last one is around uf1=2. To give more details, the Poincaré sections of the transverse motion 
for the system of Fig. 2 at uf1=1.106 are plotted in Fig. 3. From this figure, it is seen that the type of the transverse 
motion for uf1=1.106 is chaos. In addition, the size-dependent time history of the transverse motion for this case 
is illustrated in Fig. 4. 

 

 
Figure 2: Bifurcation plots of ultrasmall viscoelastic tubes containing pulsatile flowing fluid for uf0=8.5. 
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Figure 3: Poincaré sections of the transverse motion for the system chaos observed in Fig. 2 at uf1=1.106. 

 

 
Figure 4: Time history of the transverse motion for the system chaos observed in Fig. 2 at uf1=1.106. 

4 CONCLUSIONS  

 
The influence of the pulsation of the fluid flow on the complex vibrational behaviour of ultrasmall viscoelastic tubes 
surrounded by a nonlinear elastic medium was investigated. The emphasis was put on the chaos of the ultrasmall 
system. The MCST is employed for capturing the size influence on the vibrational behaviour. The influence of the 
internal friction was also incorporated by the Kelvin-Voigt model. The ultrasmall tube was under pretention along 
the axial direction. Employing an energy/work principle, the Galerkin approach and a continuation method, the 
governing equations were derived, discretised and solved. It was found that both the amplitude and mean value 
of the fluid velocity have a significant role in the complex vibrational response of ultrasmall viscoelastic tubes. In 
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the super critical regime, various types of transverse motion are found depending on the value of the amplitude 
of the fluid flow. As a future work in this area to carry this research further, one can calibrate the scale parameter 
using molecular dynamics simulations or conducting experiments.   
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