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ABSTRACT 
Despite widespread community acceptance of renewable power generation to reduce CO2 emissions and natural 
resource impacts, large-scale expansion of wind farms has prompted significant community debate regarding 
adverse health impacts of wind farm noise (WFN). Our research has aimed to investigate this issue by identifying, 
quantifying, and characterising the components of WFN that are responsible for annoyance and sleep disturb-
ance. In this study, we carried out 1-year-long acoustic and meteorological measurements at three residences 
located near different wind farms, allowing detailed characterisation of WFN and its relationship with meteorolog-
ical conditions. At two of these residences, participants recorded their subjective annoyance, providing insight into 
the relationship between specific noise features and human response. To detect amplitude modulation (AM), 
which is a particularly annoying component of WFN, we used a novel detection algorithm which significantly out-
performed previous methods. Application of this algorithm revealed that AM prevalence was 2 to 5 times higher 
during the nighttime compared to the daytime. Annoyance due to WFN was reported most often during the 
nighttime and early morning, consistent with the measured AM prevalence. Participants most often described the 
noise as a “swish” or “swoosh” and the presence of these signal components was confirmed via spectral analysis.  

1 INTRODUCTION 
Wind is one of the world’s fastest-growing renewable energy sources (Global Wind Energy Council (GWEC), 
2019), reaching approximately 870 GW in 2021 ((WindPower, 2021). This rapid expansion of wind farms has 
been accompanied by concerns regarding adverse noise impacts, including sleep disturbance (Bakker et al., 
2012; Nissenbaum, Aramini, & Hanning, 2012), daytime sleepiness (Nissenbaum et al., 2012), psychological dis-
tress (Bakker et al., 2012) and reduced health-related quality of life (Shepherd & Billington, 2011). Some argue 
that these concerns are unfounded and reflect nocebo effects triggered by social discourse and media reports 
(Crichton & Petrie, 2015). This may be further confounded by multiple factors not directly related to WFN that may 
still contribute to perceived disturbance from WFN, including living environment (Eja Pedersen & Larsman, 2008), 
noise sensitivity (Miedema & Vos, 2003), economic benefits (E. Pedersen, Van den Berg, Bakker, & Bouma, 
2009), visual effects (Schäffer, Pieren, Hayek, Biver, & Grêt-Regamey, 2019) and attitudes towards wind farms 
(Eja Pedersen & Waye, 2004). On the other hand, some residents living near a wind farm have abandoned their 
properties at significant personal and financial cost (Krogh, 2011), while others have implemented expensive 
sound insulation measures (Botelho, Arezes, Bernardo, Dias, & Pinto, 2017), illustrating the high value that indi-
viduals place on peaceful surroundings. Thus, despite the influence of many confounding factors, it is likely that 
some individuals are adversely impacted by WFN, although the extent of this issue is hitherto unknown.  

Noise annoyance is a key driver of adverse noise effects and is well-established for traffic-related noise (Babisch, 
Ising, & Gallacher, 2003), and increasingly for WFN, which also has noise features that may exacerbate annoy-
ance (Eja Pedersen & Waye, 2004) and increase loudness (Jurado, Gordillo, & Moore, 2019). These features 
include low-frequency spectral dominance (Ingielewicz & Zagubień, 2014; Zajamšek, Doolan, Hansen, & Hansen, 
2016), amplitude modulation (AM), tonality, and substantial contrast between operational versus ambient noise, 
particularly at nighttime, in the normally quiet rural environments where Australian wind farms are usually located 
(K. Hansen, Zajamšek, & Hansen, 2014). Although the unique features of WFN are well-known, the relationship 
between WFN features and noise annoyance in real-world field settings remains largely unknown (Freiberg, 
Schefter, Girbig, Murta, & Seidler, 2019). Current evidence is limited to population-based studies (Kuwano, Yano, 
Kageyama, Sueoka, & Tachibana, 2014) that relied on modelling to determine sound pressure levels (SPLs), and 
listening test studies (K. Hansen et al., 2019; Kristy Lee Hansen, Nguyen, Zajamsek, Micic, & Catcheside, 2019; 
Schäffer et al., 2016), that have investigated few noise stimuli with limited noise features and unrealistically short 
exposure times (≤ 5 min.) resulting in limited ecological validity. Very few studies have investigated the impact of 
WFN on sleep (Jalali et al., 2016; D. Michaud et al., 2016; Smith et al., 2020) and none to date, have been 
designed to test for temporal relationships between specific WFN features and sleep disturbance. Thus, from the 
limited evidence available, it is impossible to establish the extent to which prominent WFN acoustic features in-
fluence WFN annoyance and sleep disturbance for residents living near wind farms. 
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Among WFN characteristics, amplitude modulation (AM) is of particular research interest due to its propensity to 
contribute to annoyance (Ioannidou, Santurette, & Jeong, 2016; Lee, Kim, Choi, & Lee, 2011; Schäffer et al., 
2016) and possible sleep disturbance (Liebich et al., 2021; Micic et al., 2018; Smith et al., 2020). AM in the context 
of WFN is defined as a periodic variation in SPL at the blade-pass frequency (Bass et al., 2016; C. H. Hansen, 
Doolan, & Hansen, 2017), typically between 0.4 and 2 Hz, which is commonly described as “swish swoosh” or 
“rumble”. AM typically occurs during the evening and nighttime when environmental conditions tend to be more 
stable and thus, favourable for AM (Conrady, Bolin, Sjöblom, & Rutgersson, 2020; Kristy L Hansen, Nguyen, 
Zajamšek, Catcheside, & Hansen, 2019; Larsson & Öhlund, 2014). AM is a highly variable phenomenon which 
depends on meteorological conditions (Conrady et al., 2020; Larsson & Öhlund, 2014; Paulraj & Välisuo, 2017), 
distance from the wind farm and wind farm operating conditions (Kristy L Hansen et al., 2019). The associated 
variations in the AM characteristics make AM challenging to detect using automated techniques. Subsequently, 
identifying and quantifying AM is also challenging as it depends on the performance of AM detectors.  

Previous long-term field studies have investigated wind farm AM and its relationship with atmospheric and wind 
farm operating conditions to a limited extent. The results showed that wind farm AM was associated with wind 
direction (Larsson & Öhlund, 2014; Paulraj & Välisuo, 2017) sound speed gradient, solar elevation angle, turbu-
lence intensity (Conrady et al., 2020; Larsson & Öhlund, 2014), and diurnal meteorological variations (Conrady et 
al., 2020; Kristy L Hansen et al., 2019). The majority of these studies were carried out in cold climates with snow 
covered ground during the winter months. Snow covered ground has a high sound absorption coefficient, even at 
low frequencies, and thus attenuates noise much more effectively than other ground surface types (Bies, Hansen, 
& Howard, 2017; C. H. Hansen et al., 2017; Ostashev & Wilson, 2016). Previous long-term studies (Conrady et 
al., 2020; Larsson & Öhlund, 2014) recorded only low time and frequency resolutions of acoustic data such as 
1/3-octave band or fast time-weighted SPLs which limited analyses to conventional AM detection methods (Bass 
et al., 2016; Larsson & Öhlund, 2014) unable to reliably detect AM (Nguyen, Hansen, Lechat, et al., 2021). Long-
term quantification of AM has been predominantly carried out at distances of 1 km or less from wind farms, where 
WFN is dominated by mid to high frequencies (> 200 Hz). At larger wind farm setback distances, more typical for 
Australia, WFN is dominated by lower frequencies (< 200 Hz) (Kristy L Hansen et al., 2019). However, previous 
studies have not systematically investigated long-term low-frequency AM. Furthermore, although indoor noise is 
more relevant to annoyance and sleep disturbance than outdoor noise, previous studies have not attempted long-
term characterisation and quantification of indoor AM, particularly at long-range distances to a wind farm. Hence, 
only a few studies have attempted long-term wind farm measurements to date and therefore the prevalence and 
characteristics of outdoor and indoor AM for a range of setback distances and climates remains unknown.      

Few studies have examined the human response to WFN in a real-world field setting. In fact, only two small 
studies have taken simultaneous noise diary and WFN measurements at residences located near wind farms. A 
20-day long study by Jennings and Kennedy (2019) found, via visual inspection of noise diaries, a correlation 
between subjective reports of wind farm AM and AM quantified using the Institute of Acoustics ‘Reference method’ 
(Bass et al., 2016). AM was subjectively described as “swishing” or “swooshing”. The dominant frequency range 
over which AM occurred was 200-800 Hz with AM depths between 2.5 and 6.5 dB at times when annoyance was 
recorded by residents. A similar study by Janhunen et al. (2017) was carried out over 2-3 weeks during winter 
and spring and involved 21 participants living between 706 and 2392 m from the nearest wind turbine. Noise 
measurements were taken at five locations near two different wind farms located in areas with different back-
ground noise characteristics. This study focused on audibility rather than annoyance and participants were asked 
to record indoor WFN audibility on a scale of 0 (no sound) to 3 (very loud). The study showed that WFN was 
audible indoors between 0 to 14.6% of the time and that WFN audibility appeared to be dependent on location 
specific background noise, but with no clear relationship between WFN SPL and audibility. In addition to small 
sample sizes and short monitoring periods, neither study recorded subjective annoyance ratings or indoor noise, 
so the potential contribution of specific WFN components to annoyance in a field-based setting remains unclear. 

The aim of this study was to investigate the relationship between WFN, its AM, and annoyance using one year of 
continuous outdoor and indoor field measurements. To facilitate automated detection of AM in this long-term 
dataset, an algorithm was developed, based on machine learning, which significantly outperformed previous AM 
detection methods. The long analysis period was used to examine seasonal variations in WFN and background 
noise, to assess the frequency of annoyance over a prolonged time frame and to examine whether annoyance is 
more likely to occur at specific times during the day or night. This study also sought to determine the strength of 
relationships between relevant acoustic metrics and annoyance associated with wind farm noise. In addition to 
acoustic variables, possible relationships between non-acoustic variables such as wind farm power output and 
meteorological conditions and annoyance were also explored.   
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2 METHODS  
This section describes the measurement set-up and instrumentation as well as providing details on the develop-
ment of an AM detection algorithm. A description of the participants and recruitment strategy is included, along 
with details on the noise diary used to collect self-reported data in the field. A description of data analysis tech-
niques and statistical methods is also provided. 

2.1 Overview of study region and data collection 
The acoustical data sets used in this study contained WFN measured at three residences (H1-H3) located be-
tween 980 m and 3.5 km from the nearest wind turbine of South Australian wind farms (Figure 1). An additional 
residence, H4, was unoccupied and located approximately 30 km from the nearest wind farm, and thus it was 
assumed that AM WFN did not exist at this location. Noise data were measured for one year at locations H1, H2 
and H3 and five months at location H4. The H3 data set also contained approximately three days of measurements 
of background noise when the wind farm was not operating. At the time of measurements, Wind farms 1, 2 and 3 
comprised 99 Siemens 3.2 MW turbines, 70 Suzlon 2.1 MW wind turbines and 37 Vestas V90-3.0 MW wind 
turbines, respectively.  
 
A typical measurement setup included a microphone that was positioned at 1.5 m above ground level (except H1 
where a ground level microphone was used) and protected using a spherical secondary windshield with a diameter 
of 450 mm (See K. Hansen et al. (2014) for details). The microphone was typically positioned at least 10 m away 
from the residence and surrounding vegetation to minimize façade reflections and wind-induced vegetation noise. 
At all measurement locations, acoustic data were acquired using a Bruel and Kajer LAN-XI Type 3050 data ac-
quisition system with a sampling rate of 8,192 Hz and a G.R.A.S type 40 AZ microphone with a 26CG preamplifier, 
which has a noise floor of 16 dB(A) and a flat frequency response down to 0.5 Hz. Further details of the experi-
mental setup are described in previous work (K. Hansen et al., 2014; Kristy L Hansen et al., 2019). 
 

2.2 AM detection algorithm 
A machine learning-based random forest method was used for detecting AM (Nguyen, Hansen, Lechat, et al., 
2021). A random forest classifier (Breiman, 2001) consists of decision trees, which represent possible outcome 

Figure 1. Measurement locations and experimental set-up. A, wind farm layouts and measurement locations. 
B and C, typical outdoor and indoor microphone position set-up. 
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maps for a series of related choices. The decision trees were constructed using randomly selected noise features 
that were considered as being relevant for WFN AM detection. A comprehensive range of 31 noise features were 
used and included A-, C-, and G-weighted SPLs, spectral shape, spectral balance, tonality and signal periodicity 
at the blade-pass frequency. These features can be divided into four categories, including frequency domain 
features, overall noise features, time domain features and features extracted from the other automated AM de-
tection methods. To classify an input sample (i.e., AM or no AM), the relevant audio features were inserted into 
every predictor (tree) in the classifier and a majority voting approach was used. The ratio between the number of 
trees voting “AM" out of the total tree population represented the probability of AM being present. This method 
allowed for an accurate determination of “AM prevalence”, which is the percentage of time that AM was present 
in 10-sec blocks during each annoyance period. 
 
The model was validated using a benchmark data set which was generated by an acoustic engineer who listened 
to 6,000 10-sec audio samples. These samples were randomly extracted from the year-long acoustic dataset and 
they were classified as either containing “AM” or “no AM”. The area under the precision recall curve and the false 
positive rate were used to evaluate the detection accuracy and the results were compared to three previously 
published AM detection methods. The first method, labelled a1 (Bass et al., 2016), uses a “hybrid” approach 
involving analysis in both the time- and frequency-domains.  The other two methods labelled a2 (Larsson & 
Öhlund, 2014) and a3 (Fukushima et al., 2013) are implemented in the frequency- and time-domains, respectively. 

2.3 Participants and self-reported data collection 
To be eligible for the study, one occupant at each residence needed to confirm that they were disturbed by wind 
farm noise and this participant was responsible for recording their annoyance via noise a diary. Participants also 
needed to agree to host instrumentation inside and outside of their residence for the 1-year study duration. To 
recruit participants, the study was advertised via 585 postal flyers, four community talks and word-of-mouth. De-
spite the extensive advertising conducted, only four participants decided to take part in the study. These four 
participants provided voluntary informed written consent and received $500 reimbursement for study involvement. 
During monthly instrumentation checks, the participants were asked whether they had completed any noise diary 
entries and subsequently, relevant pages were collected to minimise potential data loss. Despite this, only two 
residents were able to complete a sufficient number of noise diary entries for meaningful analysis and hence 
results from only two locations are reported. These residences are located in remote rural areas, where the back-
ground noise is minimal and can be generally attributed to occasional farming activities, local traffic and wind 
noise. The participants at these two locations were both male and were aged 44 and 54 at the time of study 
consent. The other two participants completed less than four noise diary entries over the entire 1-year study 
duration. This study was approved by the Flinders University Social and Behavioural Research Ethics Committee 
(SBREC project 7536). 
 
Participants were provided with a pen-paper noise diary template (see Supplementary in Kristy L Hansen et al. 
(2021)) and asked to record whether or not they were disturbed by wind farm noise over the 1-year study duration. 
They received verbal instructions on how to fill in the noise diary when the instrumentation was installed in their 
homes. To make a diary entry, participants were asked to record the start and end time of their rating, rate their 
level of annoyance using a 5-point scale (1 Not at all; 2 Slightly; 3 Moderately; 4 Very; 5 Extremely) (ISO TS 
15666, 2003), describe the noise character and indicate whether the disturbance was heard or perceived via 
means other than hearing or both. The annoyance responses were collapsed as per ISO TS 15666 (2003) and 
consistent with previous research (D. S. Michaud et al., 2016; E. Pedersen et al., 2009) whereby participants 
reporting to be either “very” or “extremely” annoyed were classified as “highly annoyed” and participants reporting 
to be “not at all”, “slightly” or “moderately” annoyed were treated as “not highly annoyed”. 

2.4 Data and statistical analysis 
The present study analysed the outdoor WFN noise data measured at 1.5 m above ground level (except at H1 
where noise was measured at ground level) and indoor data measured in a top room corner. To maximise data 
quality, an LAeq plot of all data against time was constructed, and extraneous noise events were detected visually 
and manually excluded if noise contamination was confirmed through listening to the audio file. Less than 10% of 
the total measured samples were excluded (See (Nguyen, Hansen, Catcheside, Hansen, & Zajamsek, 2021)). All 
signal processing and data analysis was implemented in MATLAB (https://www.mathworks.com), while statistical 
analysis (two-tailed t-test and linear regression, as appropriate) was implemented in R version 4.0.0 
(https://www.r-project.org). The statistical significance threshold was set at p < 0.05. 
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3 RESULTS 

3.1 AM detection algorithm performance 
The performance of the random forest-based AM detection method is compared to three automated detectors 
(a1-a3) on precision-recall plots in Figure 2 The test set for detectors a1-a3 included all samples in the benchmark 
data set, while the test set for the random forest detector included all data not used for model training (out-of-bag 
samples). The random forest-based method outperformed the other methods (ANOVA p-value < 0.001), with an 
AUPRC of 0.85 (where 1 represents 100% detection of AM). In fact, the algorithm performance was found to be 
comparable to human performance, based on inter-scorer agreement (Nguyen, Hansen, Lechat, et al., 2021). 
Furthermore, this AM detection method substantially outperformed previous AM detection algorithms, where the 
mean AUPRC for a1-a3 ranged from 0.43 to 0.55. The performance of a1 was better than a2 and a3 (all p < 
0.001), and a2 performed better than a3 (p < 0.001). 
 
 

 
The performance of AM detection algorithms has previously been described in terms of the false positive rate  
(FPR) (Bass et al., 2016; Larsson & Öhlund, 2014), and thus this metric was also examined, as shown in Figure 
2B. The FPR represents the percentage of time that a method incorrectly classifies a sample as containing AM. 
Each method has a specific threshold that is used to classify the presence versus absence of AM. As the random 
forest classifier is based on probabilistic values, a threshold of 0.5 was used as values above this threshold indi-
cate that more than 50% of trees in the classifier voted for “AM”. The cut-of values used to discriminate between 
AM and no AM for methods a1-a3 were 4, 0.2 and 2, respectively, based on the thresholds suggested by the 
authors of these methods (Bass et al., 2016; Fukushima et al., 2013; Larsson & Öhlund, 2014). The false positive 
rate of the random forest classifier was low (1.6%) compared to methods a1-a3 (50%, 19% and 62%, respec-
tively). The false positive rate of methods a1 and a3 was not reported in the original descriptions of these methods 
(Bass et al., 2016; Fukushima et al., 2013), but was reported to be 2.6% for method a2 (Larsson & Öhlund, 2014), 
and was thus substantially lower than for the data set analysed in this study. 

3.2 Long-term quantification of AM 
AM occurred more often during the nighttime compared to the daytime (Figure 3A), two-sample t-test, all p-values 
< 0.001. At locations H1 and H2, which were within 1.3 km of the nearest wind turbine, outdoor AM occurred on 

Figure 2. Performance of automated detectors. A, performance using the benchmark data set, where the values 
associated with each curve are mean [95% confidence interval]. The shaded area is the 95% CI. B, false positive 
rate of each detection method estimated from the no wind farm noise data set. The dashed lines indicate the AM 
classification threshold. 
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average for more than 50% and 25% of the nighttime and daytime, respectively. Similar trends were also observed 
at location H3, but with a lower prevalence of around 25% AM during the nighttime and only 3% during the day-
time, where the nighttime value is comparable to previous observations for similar distances (Kristy L Hansen et 
al., 2019). A larger number of AM events were detected outdoors compared to indoors, with the exception of 
location H3 during the daytime, as shown in Figure 3B. On average, outdoor AM prevalence was approximately 
1.5 times higher than indoor prevalence (See Nguyen, Hansen, Catcheside, et al. (2021) for further details). The 
outdoor-to-indoor AM prevalence reduction at H1 and H2 was similar, ranging between 1.5 and 2.2. In contrast, 
the difference between outdoor and indoor AM prevalence was smaller for data measured at H3 during the 
nighttime (reduction = 1.1), and indoor AM occurred more often than outdoor AM during the daytime (reduction = 
0.4).  
 

 
The WFN AM depth measured outdoors and indoors at locations H1-H3 is shown in Figure 3B. AM depth is a 
measure of the peak-to-trough variation in the overall SPL and is an indicator of potential human disturbance. The 
AM depth was calculated as ΔLAeq,5 – ΔLAeq,95, where Δ represents the difference between the fast- and slow-
weighted SPLs (Fukushima et al., 2013). This metric is reported in this study because it has been used in labor-
atory listening experiments to assess the annoyance potential of AM (Renewable UK, 2013; Yokoyama, 
Sakamoto, & Tachibana, 2013). The median AM depth measured indoors was higher than that measured out-
doors at all three locations, as shown in Figure 3B (two sample t-test, all p < 0.001). These results may be ex-
plained by the lower level of indoor noise, as shown in Figure 3D, which would provide less masking than the 
higher level outdoor noise. At H1-H3, the median indoor AM depth was greater than 2 dBA, and hence most of 
the AM events could cause a fluctuation sensation for residents within the home, according to Yokoyama et al. 
(2013). Further results, not shown here, indicated that the AM depth for each octave band was higher than the 

Figure 3. Outdoor and indoor AM prevalence and AM depth. A, AM prevalence percentage difference during the 
nighttime and daytime. B, AM depth distributions measured indoors and outdoors at three locations with median 
values indicated by vertical red dashed lines. C, comparison between indoor and outdoor SPL. Outdoor SPL 
distributions with median values are shown on the top and side, respectively. D, indoor and outdoor background 
noise as calculated for data measured when then wind farm power output capacity < 1%. 
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values shown in Figure 3B and the highest AM depth was observed in the lowest 63 Hz octave band (Nguyen, 
Hansen, Catcheside, et al., 2021).  
 
To examine if differences between outdoor and indoor AM prevalence could be attributed to house insulation, the 
distribution of simultaneously occurring outdoor and indoor SPLs are presented in Figure 3C. A greater A-
weighted SPL reduction was observed for H1 and H2, compared to H3. This may explain some of the differences 
between the relative outdoor and indoor AM prevalence for H3 (Figure 3A). The outdoor-to-indoor SPL reduction 
at H3 was relatively lower for outdoor SPLs < 40 dBA. However, it is important to note that the outdoor-to-indoor 
noise reduction calculated using overall SPLs depends not only on building materials, but also the noise type and 
indoor background noise characteristics. The lowest level of indoor background noise measured inside during 
periods when the wind farm power output was less than 1% was higher for H3 than for H1 and H2 (see lower 
confidence interval limit in Figure 3D). This may have affected the relationship between indoor and outdoor SPLs 
shown in Figure 3C, although the Figure 3D results could also be affected by the availability of data at such low 
power outputs. Although it is not very accurate to characterise the outdoor-to-indoor reduction using overall SPLs 
(K. Hansen, Hansen, & Zajamšek, 2015; Thorsson et al., 2018), this is a simple approach and the results are easy 
to interpret. 

3.3 Diurnal and seasonal variability 
AM occurred most frequently at nighttime between 10pm and 4am and the lowest AM prevalence was observed 
between 10am and 2pm (Figure 4A). Similar distributions of AM prevalence were observed at H1 and H2. For 
these locations, the highest and lowest AM prevalence were approximately 60% and 20%, observed at 12am and 
12pm, respectively. For location H3, less than 5% of AM prevalence was observed during the daytime, but this 
number increased to more than 30% during the nighttime. The background noise was also found to be lower 
during the nighttime compared to the daytime, as shown in Figure 3D, which was anticipated due to a reduction 
in human activities during the nighttime. Higher AM prevalence observed during the nighttime could be partly 
attributed to lower background noise levels at nighttime compared to the daytime. 
 
The mean AM prevalence was not notably different between seasons, as shown in Figure 4B. However, when 
AM prevalence was averaged over each hour, as shown in Figure 4C, clear monthly and hourly variations of AM 
were evident. At all measurement locations, during the winter and spring months, AM prevalence significantly 
increased after sunset which occurred at approximately 5pm and 8pm in the Winter and Summer months, respec-
tively. A relationship between sunrise and reduced AM prevalence can also be observed in Figure 4C. This overall 
pattern is consistent with the Larsson and Öhlund (2014) findings, where the authors observed a strong associa-
tion between AM prevalence and solar elevation angle. 

3.4 Noise diary and associated acoustic data 
A total of 167 annoyance (Participant 1: N = 112, Participant 2: N = 55) noise diary entries were collected over 
one year by two participants residing at H1 and H2. Fifteen entries were rejected due to missing acoustical, 
weather station and/or participant rating data, as well as wind speed > 5 m/s, resulting in a final number of 152 
annoyance entries (Participant 1: N = 105, Participant 2: N = 47). No noise samples were excluded based on rain 
as weather data indicated that rain only occurred during 1.4% of all noise recordings over one year. This low 
prevalence of rain is believed to have negligible effect on the results and furthermore, the AM detection algorithm 
was developed on data containing rain. All noise diary entries were made inside the house. The noise diary entries 
often spanned entire nights, making their analysis challenging as participants were likely asleep during most of 
the annoyance period. 
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Both study participants reported annoyance throughout the year, with the highest number of events in Winter 
(May, June and July) and lowest in Summer months (December, January, February), as shown in Figure 5A. All 
noise events were self-reported from inside the house, predominately in the bedroom. On average, Participants 
1 and 2 recorded at least one annoyance period per day on 30%, and 16% of the days of the year, respectively. 
However, during winter months they reported annoyance for up to 45% and 50% of the days, respectively. The 
greatest number of noise diary entries were recorded in the late evenings and early mornings, as shown in Figure 
5B. Most noise diary entries were recorded when participants were “very” and “extremely” annoyed, correspond-
ing to a rating of 4 and 5, respectively (Figure 5C). Both participants were highly annoyed for at least 40 days in 
the year and noise diary entries were usually recorded when they were at least moderately annoyed (i.e. rating of 
3). Both participants most often described the noise as a type of “swoosh” as seen in Figure 5D. The associated 
annoyance for this type of noise varied widely between a rating of 2 and 5 for Participant 1 and between a rating 
of 3 and 4.5 for participant 2. On the other hand, while “rumble” or “swoosh rumbling” noise occurred less fre-
quently, it appeared to be more consistently associated with higher annoyance ratings.  

Figure 4. Diurnal and seasonal variation of AM characteristics. A, diurnal variation of AM prevalence. Thicker 
lines are the average trend over the year for three locations. Light lines indicate the trend for each month. B, 
seasonal summary of AM prevalence, calculated as the mean AM prevalence over each season (i.e., Summer 
from Dec-Feb, Spring from Mar-May, Winter from Jun-Aug and Autumn from Sep-Oct). C, relationship between 
diurnal and seasonal variation of AM prevalence. Dashed lines indicate sunset and sunrise time. 
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The power spectrum for the “highly annoyed” cases was markedly higher than the “not highly annoyed” cases at 
H1 and H2, as evident in Figure 6A, which shows the median spectrum calculated over each noise diary entry 
duration. For Participant 1, the “highly annoyed” ratings were consistent with higher A-, C- and G-weighted SPLs, 
as well as higher wind farm power output (Figure 6B and C). However, the difference between “highly annoyed” 
and “not highly annoyed” for Participant 2 was noticeably smaller than for Participant 1, which could be due to 
various reasons including participant noise perception, wind farm noise characteristics, annoyance recording tim-
ing, building insulation properties or other potential biases. Different trends were observed for wind direction at 
each residence, where the direction corresponding to “highly annoyed” was downwind for H1 and crosswind for 
H2 (Figure 6D).  
  

Figure 5. Noise diary data overview, N = 152 after reduction due to missing data. A, annoyance entry counts per 
month. B, annoyance entry counts per hour of the day. C, annoyance entry counts per annoyance rating. D, the 
relationship between annoyance ratings and noise descriptors. 
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Figure 6. A, indoor power spectral density comparison between “Highly annoyed” (HA) and “Not highly annoyed” 
(Not HA). B, wind farm power output. C, A-, C- and G-weighted indoor sound pressure level. D, relationship 
between wind direction and annoyance. 
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4 DISCUSSION 
This paper presented a summary of a comprehensive field study focused on wind farm AM. To the best of our 
knowledge, this is the first study to detect wind farm AM using a validated, machine learning-based algorithm and 
to characterise and quantify AM using comprehensive data measured near a wind farm. This is also the first study 
to analyse simultaneous long-term acoustic, meteorological, and annoyance data measured within a few kilome-
tres from a wind farm. 
 
Wind farm AM is a challenging signal to detect, as its characteristics vary depending on meteorological conditions. 
As a result, the spectral content and time varying features are not constant. Despite these changes, the human 
auditory system can still recognise the presence of wind farm AM. Thus, for an automated AM detector to achieve 
performance close to humans, it needs to incorporate a range of specific acoustical features. In this study, the 
selected features included indicators of noise level variation, tonality and low-frequency content. The resulting 
algorithm significantly outperformed previous AM detection methods and demonstrated performance close to hu-
man scoring. These findings support the idea that human perception of AM is more complex than assumed by 
previous AM detection methods that are based on noise level variations alone. Hence, it is not surprising that the 
method presented here achieved substantial improvements in performance compared to previous methods.  
 
Consistent with previous studies, wind farm AM occurred most often during the nighttime (Conrady et al., 2020; 
Kristy L Hansen et al., 2019). Furthermore, a remarkably strong temporal relationship between sunset and sunrise 
times and the beginning and end of AM was observed. These trends were expected as nighttime provides favour-
able weather conditions for sound propagation, which include stable atmospheric conditions, high humidity, strong 
temperature inversions, and high wind shear (Stull, 1988). During these conditions, sound waves are refracted 
towards the ground surface in downwind and crosswind directions (although wind shear does not contribute in 
the latter case) (Ostashev & Wilson, 2016). Consistent with the prevalence of AM, residents reported annoyance 
most often during the nighttime and early morning. The residents were “highly annoyed” most often during different 
wind directions, although these results may have been affected by the prevailing wind directions at H1 and H2. 
The high annoyance reports and prevailing wind direction were consistent at each residence and were found to 
be downwind and crosswind, respectively (see Supplementary Material in Nguyen, Hansen, Catcheside, et al. 
(2021)). Thus, AM was more prevalent and annoying during conditions favourable to WFN propagation.  
 
A large difference was found between outdoor and indoor AM. At long-range, spectral imbalance of wind farm 
noise arises due to the higher atmospheric and ground absorption at mid to high frequencies (Ostashev & Wilson, 
2016). In fact, Kristy L Hansen et al. (2019) found that AM usually occurs at very low frequencies (i.e., around 50 
Hz) at several kilometres from a wind farm. In addition, low-frequency noise is poorly attenuated by building struc-
tures, resulting in lower outdoor-to-indoor noise level reduction at low frequencies (K. Hansen et al., 2015). These 
results could explain the relatively small outdoor-to-indoor reduction in AM prevalence that was observed at H3 
at nighttime. The increase in AM events measured indoors during the daytime at H3 may have been a result of 
high outdoor ambient noise that masked the outdoor AM but not the indoor AM. These findings suggest that the 
outdoor-to-indoor noise reduction also impacts AM prevalence. Also, a greater AM depth is associated with higher 
annoyance (Lee et al., 2011; Schäffer et al., 2016; Yokoyama et al., 2013), and thus AM may be more annoying 
when people are indoors with low ambient background noise, which is exaggerated during the nighttime. These 
observations are particularly relevant for cases where AM is only measured outdoors. 
 
There were no significant differences in outdoor AM prevalence between seasons, considering combined daytime 
and nighttime data. This contrasts with the study conducted by Conrady et al. (2020) where the authors reported 
more frequent AM during the Winter compared to Spring, but with more limited data from a much colder climate 
in Sweden. Despite the lack of difference in AM prevalence between seasons, both participants reported annoy-
ance more often during the Winter months. This may have occurred due to more stable environmental conditions 
at nighttime during winter compared to other seasons, a phenomenon that was observed at a nearby location 
(within 100 km) to this study (Zajamšek et al., 2016). Van den Berg (2008) showed that while stable atmospheric 
conditions occurred less often in the spring and summer compared to the autumn and winter, a relatively high 
percentage of the shorter summer nights exhibited a stable atmosphere.Therefore, relatively more annoyance 
recordings in winter could reflect other factors apart from AM prevalence, including a greater sundown period, 
during which people are more likely to be indoors and trying to relax or sleep. These factors need to be considered 
in addition to AM prevalence when predicting seasonal variations in annoyance.    
 
Substantial differences in the noise level and frequency content were observed when residents reported that they 
were “highly annoyed” as opposed to “not highly annoyed.” When residents reported high annoyance, the largest 
spectral differences occurred at infrasonic frequencies (< 20 Hz) and at mid-frequencies (200 - 600 Hz). The 
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measured infrasound contained the blade-pass frequency and harmonics extending up to approximately 10 Hz, 
typical of wind farm noise (Zajamšek et al., 2016). The mid-frequency noise components were consistent with 
“swish” noise, which is dominant at 500 Hz (Doolan, Moreau, & Brooks, 2012). Although differences in SPL up to 
20 dB were observed at infrasonic frequencies, the associated SPLs were well below the normal hearing threshold 
(ISO389-7, 2005). Additionally, neither participant recorded any symptoms that have been claimed to be associ-
ated with infrasound exposure such as nausea, pressure (or fullness) in the ears and/or dizziness (Maijala et al., 
2021; van Kamp & van den Berg, 2018). Thus, annoyance was most likely associated with the increased SPL at 
mid-frequencies, as this is consistent with the “swish” character mentioned in the noise descriptors chosen by 
both participants. In fact, all noise descriptors chosen by the participants indicated that there was AM present in 
the noise when it invoked annoyance. Hence, there was good agreement between noise diary entries and acoustic 
data in terms of both SPL and frequency content. 
 
Several weaknesses of this study warrant consideration. For instance, the benchmark dataset used to develop 
the AM detection algorithm may limit its applicability to other datasets due to differences in source-receiver dis-
tance, topography, wind farm layout, wind turbine model, prevailing atmospheric conditions, etc. Although we 
measured comprehensive acoustical data, a limitation of our study is a lack of comprehensive meteorological data 
measured at hub-height most relevant to the noise source. This limitation calls for better data sharing practices 
between wind farm operators and researchers (Kusiak, 2016) to allow for more in depth analysis of relationships 
between wind farm noise and meteorological conditions. Another limitation was that noise diary entries were 
clearly biased towards annoyance given the nature of annoyance reporting and the fact that few entries for “Not 
at all” annoying were recorded. Few reports of low annoyance limits the reliability of estimates of the prevalence 
of annoyance and key acoustic features that may help distinguish periods of high versus low WFN annoyance. In 
future work, this could perhaps be avoided by instructing participants to record noise diary entries at random, or 
at repeated time points during both high versus low AM, as proposed by Janhunen et al. (2017), to allow for a 
larger range of annoyance ratings to be collected. Alternatively, random sampling methods could be more useful 
to periodically prompt for annoyance responses without over-burdening participants. This method would also re-
duce potential biases such as weather, season, apathy, participant burden, socioeconomic status associated with 
annoyance reporting, which can include missing entries and/or skewing of entries towards when participants are 
less busy. Another limitation is the small number of participants, which clearly limits generalisability of these re-
sults. The generalisability is further limited by several factors influencing annoyance including personal (e.g. ap-
athy), socioeconomic (e.g. wind turbine host or farmer with seasonal work), or methodological (e.g. annoyance 
recording forms on a nightstand by the bed, unknown exact duration of the annoyance periods). Future studies 
using larger sample sizes, including participants at varying distances from wind turbines and with different atti-
tudes and self-reported annoyance to WFN, are clearly needed to further evaluate AM compared to other acoustic 
features of WFN that may contribute to WFN annoyance and impacts on nearby communities.  

5 CONCLUSIONS 
The advanced, automated AM detector developed in this study was based on the random forest approach. This 
AM detector demonstrated high performance, and substantially outperformed traditional AM detection methods 
to achieve a classification performance close to that of humans. This AM detector was used to characterise and 
quantify wind farm AM for a large data set measured over one year at three relatively long-range distances from 
three wind farms in South Australia. Outdoor AM was present for more than 50% of the nighttime at residences 
located less than 2 km from the nearest wind turbine. The nighttime AM prevalence was lower indoors than out-
doors, but there was an increase in AM depth in the indoor data. The results showed clear diurnal and monthly 
variations in AM prevalence, indicating a strong relationship between sunset time and increased AM prevalence. 
This study also explored self-reported annoyance at two locations near two wind farms over one year and showed 
that the highest annoyance was recorded during the cold winter months in the evening, nighttime and early hours 
of the morning at times likely to influence sleep. The participants most often described the noise as a type of 
“swoosh”, “swoosh rumbling” and “rumble” at times when acoustic features supported the presence of amplitude 
modulation. However, small sample size and the potential for a range of possible biases requires careful interpre-
tation of associations between wind farm noise and annoyance. 
 
We hope that, in the future, further insight into the prevalence of AM and associated meteorological conditions, 
and impacts on humans will help to explain underlying noise generation mechanisms relevant to human percep-
tion. Ultimately, this will improve the design of wind turbines such that they are less disturbing and hence, more 
acceptable to surrounding communities. 
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