
 

Acoustics 2021 Page 1 of 8 

Predicting outdoor sound propagation in the presence of wind 
and temperature inversions 
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ABSTRACT 
It is common in Australia to encounter complex meteorological conditions such as temperature inversions, espe-
cially at night. These climatic conditions can have a significant effect on the propagation of sound, and this can 
influence the noise levels experienced by local communities from activities such as mining. It is, therefore, desir-
able to understand how the propagation of sound is influenced by climatic conditions, especially in the planning 
and monitoring of noise generating activities. In this article, a semi analytic finite element method is used to gen-
erate solutions to the exact governing wave equation for a two dimensional problem. This permits arbitrary wind 
and temperature profiles to be included, so that exact solutions can be generated for temperature inversions in 
the presence of wind. Predictions are presented for range independent problems in the presence of different 
temperature inversions, as well as ground conditions. It will be shown that the semi analytic finite element method 
enables solutions to be generated for large ranges, and predictions will be presented here for ranges of up to 
5 km.  

1 INTRODUCTION 
Predicting the propagation of sound in the atmosphere presents many challenges. This includes accommodating 
complex environmental conditions, such as variations in temperature and wind speed, as well as the influence of 
the ground impedance. These factors lead to a challenging mathematical problem which is ideally addressed 
using numerical methods, as these can accommodate complex fluid properties. However, if one wishes to apply 
numerical methods such as the finite element (FE) method then the dimensions typically encountered in outdoor 
sound propagation mean that the number of degrees of freedom required quickly becomes prohibitive. 
 
This means that in outdoor sound propagation it is common practice to approximate the governing wave equation 
and/or the underlying physics of the problem. Popular approaches include ray based models (Ostashev and Wil-
son, 2016), which track energy propagation and generally work best at higher frequencies, although a number of 
approximations are required in order to deliver predictions when complex wind profiles are present. Parabolic 
equations (PEs) are now one of the most widely used methods for examining outdoor sound propagation (Gilbert 
and White, 1989), although this approach is also approximate as it removes terms from the governing equation, 
and is limited to sound propagation in one direction only. However, PEs can accommodate range varying fluid 
properties and have been shown to provide a good approximation for relatively complex atmospheric conditions 
(Ostashev et al., 2020). 
 
The approximations inherent in these models raises the question: how do we know the predictions are accurate, 
especially given the large number of variables present? For example, if we compare against experimental meas-
urements can we be sure that any agreement reflects the accuracy of the model, rather than a fortuitous combi-
nations of approximations within the model and errors in the experiment. Thus, when developing new theoretical 
models it is important first to understand the accuracy of the model, and to do this it needs to be benchmarked 
against a theoretical approach that is known to be ‘exact’ or as close to exact as possible. For outdoor sound 
propagation a benchmark that is often chosen is the Fast Field Program (FFP), (Taherzadeh et al., 1998, and 
West et al., 1991). However, this approach again includes approximations, for example by discretisation of the 
fluid properties in the vertical direction into laminae with constant fluid properties. This means that the nonlinear 
wind and temperature profiles are approximated as discontinuous functions, and wind shear cannot be included. 
Moreover, the method becomes progressively unstable as the gradient in the fluid properties increases (Taher-
zadeh et al., 1998). 
 
To address these challenges, and to deliver a more comprehensive benchmark solution, Kirby (2020, 2021) re-
cently developed an FE based approach for range independent problems. The method removes the need to mesh 
the range dimension so that discretisation is required in the height direction only. This is referred to as the semi 
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analytic finite element (SAFE) method (see also, Duan and Kirby, 2019; Duan et al., 2016), and it radically reduces 
the computational size of the problem, which presents the opportunity for application to outdoor sound propaga-
tion, at least for range independent problems. Furthermore, by using FE it is possible also to include all of the 
physics of the problem provided the fluid is vertically stratified in two (range – height) dimensions. It was then 
shown that the SAFE method will deliver an exact solution of the problem provided a sufficient number of degrees 
of freedom are included in the FE mesh, as well as a sufficient number of normal modes (Kirby, 2020). The SAFE 
method is, therefore, ideally suited to delivering a benchmark prediction for complex atmospheric sound propa-
gation problems, such as those in which a logarithmic wind velocity profile is combined with a logarithmic temper-
ature inversion over an impedance surface. Accordingly, in this article the method is explored in more detail and 
new predictions are generated for complex atmospheric conditions relevant to conditions in Australia. 

2 THEORY 
The detailed theoretical development of the SAFE method for outdoor sound propagation is described by Kirby 
(2020, 2021). The method is briefly summarised here for a point source above a ground characterised by a locally 
reacting impedance. The governing wave equation is derived from the Navier-Stokes equation, and for a vertically 
stratified two-dimensional geometry, with a range (𝑥𝑥) and a height (𝑧𝑧), the equations of motion are (Ostashev and 
Wilson, 2016): 
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Here, 𝑝𝑝′ is acoustic pressure, 𝑐𝑐 is the speed of sound, 𝜌𝜌 is the fluid density, 𝐮𝐮′ = (𝜌𝜌𝑥𝑥′ ,  𝜌𝜌𝑧𝑧′ ) is the acoustic particle 
velocity, and 𝐯𝐯 = (v𝑥𝑥, 0) is the velocity of the fluid. Note that fluid properties 𝜌𝜌, 𝑐𝑐 and v𝑥𝑥 are arbitrary functions of 
the height 𝑧𝑧, and the derivative of each of these properties in the 𝑥𝑥 direction is zero. In addition, 𝑔𝑔 is gravity, 𝑄𝑄 is 
a mass source, and D𝑡𝑡 = 𝜕𝜕 𝜕𝜕𝜕𝜕 + v𝑥𝑥 𝜕𝜕 𝜕𝜕𝑥𝑥⁄⁄ , with 𝜕𝜕 denoting time. 
These equations of motion contain all the physics of the problem, including wind shear and the effects of gravity, 
although the latter is only relevant here when calculating the variation of fluid density with height. Following 
Ostashev and Wilson (2016), it is possible to combine these equations into a single wave equation in the acoustic 
pressure, which gives 

� 1
𝑐𝑐2

D𝑡𝑡
3 − D𝑡𝑡 �

∂2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
+ 2𝑔𝑔� 𝜕𝜕

𝜕𝜕𝑧𝑧
+ 𝑔𝑔�2 − 2𝑔𝑔�

𝑐𝑐
𝜕𝜕𝑐𝑐
𝜕𝜕𝑧𝑧
� + 2 𝜕𝜕v𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥
�𝑔𝑔� + 𝜕𝜕

𝜕𝜕𝑧𝑧
� + �2𝑔𝑔� + 1

𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝑧𝑧
� 𝐷𝐷𝑡𝑡 �𝑔𝑔� + 𝜕𝜕

𝜕𝜕𝑧𝑧
�� 𝑝𝑝′ = 𝜌𝜌D𝑡𝑡

2𝑄𝑄,  (4) 

where 𝑔𝑔� = 𝑔𝑔 𝑐𝑐2⁄  and 𝜌𝜌 = 𝜌𝜌0𝑇𝑇0
𝑇𝑇

exp �− 𝑔𝑔
𝑅𝑅𝑎𝑎
∫ 1

𝑇𝑇
𝑍𝑍
0 𝑑𝑑𝑧𝑧′�. In addition, 𝜌𝜌0 and  𝑇𝑇0 are reference values for density and tem-

perature, respectively, at a reference height 𝑧𝑧 = 𝑧𝑧0; and 𝑐𝑐2 = 𝛾𝛾𝑎𝑎𝑅𝑅𝑎𝑎𝑇𝑇, with 𝛾𝛾𝑎𝑎 the ratio of specific heats, 𝑇𝑇 is air 
temperature, and 𝑅𝑅𝑎𝑎 the gas constant for dry air. 
This wave equation is exact for a two dimensional problem, which means that an accurate solution of this equation 
will deliver a true benchmark solution for range independent problems. The SAFE method proceeds by first cal-
culating the normal modes of the open waveguide. To do this, the following ansatz is specified: 
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which is then substituted into the governing wave equation, and after removing the point source 𝑄𝑄 for this part of 
the solution, an eigenequation is obtained that is solved for the normal modes:  
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Here, the time dependence has been removed, 𝑘𝑘 = 𝜔𝜔 𝑐𝑐⁄ , and the Mach number M = v𝑥𝑥 𝑐𝑐0⁄ . Note that Eq. (6) is a 
cubic equation in the wavenumber 𝛾𝛾 only if one retains the wind shear terms. If wind shear is removed then the 
equation returns to the more well-known convected Helmholtz equation (Kirby, 2020). Solution of Eq. (6) is 
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achieved through the use of a weak Galerkin approach, which yields a finite element discretisation of this equation. 
This is then solved using an eigensolver in MATLAB® in order to obtain the normal modes propagating in the 
positive 𝑥𝑥 direction: 𝛾𝛾𝑛𝑛 and 𝑝𝑝𝑛𝑛(𝑧𝑧); and the negative 𝑥𝑥 direction: 𝛾𝛾−𝑛𝑛 and 𝑝𝑝−𝑛𝑛(𝑧𝑧). 
 
After solution of the eigenequation it is necessary to add in a point source, which enables the amplitudes of each 
normal mode to be obtained. This is achieved by enforcing continuity of acoustic pressure and axial particle ve-
locity over a vertical line passing through the point source. This yields the following expression for the modal 
amplitudes (Kirby, 2021):  

A𝑛𝑛 = 𝑖𝑖𝑞𝑞0
𝜌𝜌𝑠𝑠Λ𝑛𝑛,𝑛𝑛

𝑝𝑝𝑛𝑛(𝑧𝑧𝑠𝑠) (7) 

where 𝑧𝑧𝑠𝑠 is the source height, 𝑞𝑞0 is the amplitude of the source, and 𝜌𝜌𝑠𝑠 is the fluid density at the source. In addition: 
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where the finite element problem is closed at a height 𝑏𝑏 using a perfectly matched layer in the region 𝑎𝑎 ≤ 𝑧𝑧 ≤ 𝑏𝑏, 
where (𝑏𝑏 − 𝑎𝑎) ≪ 𝑎𝑎. Equation (7) can readily be solved for the modal amplitudes if one assumes that Eq. (8) is 
orthogonal, which has been shown numerically to be the case for this class of problem (Kirby, 2020, 2021). After 
obtaining the modal amplitudes, one then substitutes these back into Eq. (5), and with knowledge of the properties 
of each normal mode, the sound pressure field can be calculated after truncating the modal sum at 𝑛𝑛 = 𝑊𝑊. Note 
that this sound pressure field should converge towards the exact solution as the number of elements in the mesh, 
and the number of modes in the modal sum, are increased. 

 
It is common to compute the transmission loss (TL) for outdoor sound propagation problems, and this is computed 
by normalising the sound pressure field against the equivalent one computed for free field propagation at a dis-
tance of 1m from the point source. This eliminates the source amplitude and yields the following expression for 
spherical spreading (Kirby, 2021) 
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where R2 = 𝑧𝑧2 + (𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑠𝑠)2, 𝑧𝑧𝑟𝑟 is the height of the receiver, 𝑘𝑘𝑟𝑟 is the fluid wavenumber at the receiver, and H0
(2) is 

a Hankel function of the second kind and order 0. 

3 RESULTS 
To demonstrate the flexibility of the SAFE method an arbitrary wind velocity and temperature profile are specified 
here, see Fig. 1. In Fig. 1, a logarithmic profile is specified for both the fluid temperature (Lihoreau et al., 2006) 
and the wind velocity (Taherzadeh et al., 1998). The temperature profile is also chosen to represent a temperature 
inversion, and this is achieved by combining the logarithmic profile at low altitude with a fourth order polynomial 
at high altitudes, and then a constant profile above 320 m. Note that these fluid properties are not attempting to 
replicate known atmospheric conditions, rather they are chosen to demonstrate that any combination of temper-
ature and wind velocity profiles can be accommodated. Moreover, the use of logarithmic and polynomial profiles 
means that analytic expressions can easily be obtained for their derivatives with respect to the 𝑧𝑧 direction. 
The substitution of the fluid properties into the SAFE model enables predictions to be produced for a given fre-
quency of excitation. The sound pressure field can then be reconstructed for the downstream direction using Eq. 
(5), and for the upstream direction:  

𝑝𝑝′(𝑥𝑥, 𝑧𝑧) = ∑ A−𝑛𝑛𝑝𝑝−𝑛𝑛(𝑧𝑧)𝑒𝑒−𝑖𝑖𝑘𝑘0𝛾𝛾−𝑛𝑛𝑥𝑥 ,W
𝑛𝑛=1          𝑥𝑥 ≤ 0. (10) 

Here, the modal amplitudes A−𝑛𝑛 are found after enforcing continuity of pressure over the line of symmetry at 𝑥𝑥 =
0, which gives A𝑛𝑛𝑝𝑝𝑛𝑛(𝑧𝑧) = A−𝑛𝑛𝑝𝑝−𝑛𝑛(𝑧𝑧), and then solving for A−𝑛𝑛. This then enables the pressure field to be plotted 
over an extend range, and so in Fig. 2 the sound pressure field is plotted over a range of 8 km. 
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Figure 1: Fluid properties 

 

 
Figure 2: SAFE predictions of normalised sound pressure field at 160 Hz. 

In Fig. 2 the source height is 10 m and the ground has a flow resistivity of 100 kPa s/m2, with the impedance of 
the ground calculated using the model of Attenborough et al. (1995). Note that the SAFE method can readily 
compute sound pressure fields over long distances because the mesh is only specified over the height of the 
waveguide, which means the computation of values for 𝑥𝑥 ≠ 0 is simply a post-processing exercise. This was 
shown previously by Kirby (2020), where distances up to 100 km were studied for infrasound problems. 
 
In principle the SAFE method can be extended to higher frequencies simply by increasing the number of finite 
elements and the number of modes retained in the modal sum. Accordingly, in Fig. 3 this the sound pressure field 
is illustrated for a frequency of 1 kHz, and here the range is reduced to 500 m in order to continue to observe the 
complexities of the sound pressure field. 
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The SAFE method converges towards the exact solution of the governing equation and so in principle the method 
is accurate in both the near and the far field. This can be observed in Figs. 2 and 3, where the sound pressure 
field is continuous at 𝑥𝑥 = 0, even at heights above the sound source. This is not the case for the PE method, as 
this method projects forward from the point source and even for extra wide angle predictions the method is not 
continuous over the line 𝑥𝑥 = 0, and so the method is only an approximation in the near field. And of course, ray 
theory cannot be expected to capture the sound pressure field close to the point source. Thus, the SAFE method 
provides a benchmark solution for both the near and the far acoustic fields. 
 
In practical sound propagation problems, it is common to want to know the sound pressure field at a single point 
and over a range of frequencies. Accordingly, in Fig. 4 an example TL calculation is presented for 1/3 octave 
bands over a frequency range from 10 Hz to 1 kHz, for the temperature inversion shown in Fig. 1.  

   
Figure 3: SAFE predictions of normalised sound pressure field at 1 kHz. 

 
Figure 4: SAFE predictions of TL for a temperature inversion. 

        ♦        , 𝑥𝑥𝑟𝑟 = 500 m;       ▲         , 𝑥𝑥𝑟𝑟 = 2 km;        X       , 𝑥𝑥𝑟𝑟 = 3 km. 
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Figure 4 illustrates that the SAFE method is capable of covering a relatively wide frequency range for what is a 
large computational problem. However, the method does of course require more elements once the characteristic 
wavelength becomes shorter, and this means that when the frequency is increased the solution time also in-
creases. This is the trade-off for obtaining highly accurate predictions, and for Fig. 4 the solution time is greater 
than 24 hours. Clearly, this is not fast enough for use in an iterative design environment, however it is important 
to remember that this is a very complex problem and a height of at least 300 m is studied in this particular example. 
If the atmospheric conditions were simplified, and/or at higher frequencies it was acceptable to limit the predictions 
to lower heights, then it is possible to significantly reduce solution times, as well as study higher frequencies. 
 
The development of a model that accommodates complex atmospheric conditions is designed to enable the anal-
ysis of sound propagation in Australia. This includes the analysis of noise from mines, especially at night time 
where other outdoor sound propagation models have been shown to provide inconsistent solutions for Australian 
conditions (Bullen, 2012). Other important areas include noise from wind turbines, where the SAFE model would 
enable sensitivity to atmospheric conditions to be studied. For example, Hansen et al. (2019) examined noise 
from wind turbines in South Australia using a ray based model to estimate the difference between sound pressure 
levels measured at 1.5m and at the ground surface. This was designed to compute a correction factor to enable 
measurements to be taken on the ground rather than in windy environments. However, this relies on a ray based 
model which contains a number of approximations. The advantage of the current approach is that all of these 
approximations are removed and predictions can be compared with measurements in the knowledge that any 
discrepancies are caused by the lack of information regarding the physical properties of the problem, rather than 
the model itself. To illustrate this, in Figs. 5 and 6, SAFE predictions are compared against the ray based predic-
tions of Hansen et al. (2019), as well as the experimental measurements they report for the noise emitted by wind 
turbines. In these figures, ∆𝐿𝐿𝑝𝑝 = 20log10|𝑝𝑝(𝑥𝑥𝑟𝑟 , 1.5) 𝑝𝑝(𝑥𝑥𝑟𝑟 , 0)⁄ |, where 𝑥𝑥𝑟𝑟 is the range of the receiver. 

 
Figure 5: Predictions of ∆𝐿𝐿𝑝𝑝 for noise from a wind turbine, see Hansen et al. (2019). 

, X , experiment;                , ray tracing model;        ♦       , SAFE Model. 

Figure 5 generally demonstrates good agreement between the ray and SAFE models, although some discrepan-
cies begin to appear as the frequency is increased. In Fig. 6 these differences become more significant across 
the frequency range. Hansen et al. (2019) do not provide any information of the temperature profile for these 
measurements and so a simple logarithmic profile is chosen here, similar to the one seen in Fig. 1. However, it is 
expected that the wind effects will dominate and so the effective wind speed used by Hansen et al. (2019) is 
chosen to be similar to the one used in this study. Of course, some differences in the fluid properties will remain, 
and this may explain some of the differences observed between the two predictions for Fig. 6. In addition, it is 
possible that some of the approximations used by Hansen et al. are less successful for the geometry in Fig. 6 
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when compared to Fig. 5. Nevertheless, the SAFE model is seen to be closer to the experimental measurements 
at lower frequencies in Fig. 6, although some discrepancy is still evident. However, the advantage of an exact 
solution is that one can now conclude that this discrepancy is down to a lack of information regarding the atmos-
pheric conditions and/or the ground impedance. Of course, it is also possible that range dependent effects may 
cause some of these discrepancies at higher frequencies, although given that these figures report a comparison 
between two predictions/measurements 1.5 m apart, this is not considered to be a significant source of discrep-
ancy. 

 
Figure 6: Predictions of ∆𝐿𝐿𝑝𝑝 for noise from a wind turbine, see Hansen et al. (2019). 

, X , experiment;                , ray tracing model;        ♦       , SAFE Model. 

4 CONCLUSIONS 
The use of a finite element based approach to compute outdoor sound propagation was investigated in this article. 
It is shown that by adopting a two dimensional approach in which the atmospheric conditions are assumed to be 
stratified in the vertical direction, a SAFE method can be applied that accommodates all of the physics of the 
problem. This enables the development of a method that converges towards the exact solution for complex at-
mospheric conditions, provided the problem remains range independent. Predictions are presented for a logarith-
mic wind velocity profile, as well as a temperature inversion with a logarithmic profile close to the ground. Predic-
tions of complex sound pressure fields are generated over large distances and it is shown that the method can 
provide an insight into the sound pressure patterns at different frequencies. Furthermore, the method is shown to 
be able to accommodate complex atmospheric conditions often found in Australia. 
 
The SAFE method is capable of providing accurate benchmark predictions for range independent problems. In 
principle, provided a sufficient number of finite elements and normal modes are included, the method will converge 
towards the exact solution, even at higher frequencies. However, as the size and upper frequency of the problem 
increases, the computational demands of the method will increase significantly so that the method will begin to 
slow down, especially above 1 kHz. The speed of solution is largely determined by the height of the problem to 
be analysed, and in this article the method was examined using a temperature inversion up to 300 m in height. 
For climatic conditions that do not require analysis up to such heights, it is possible to speed up the method 
significantly and to obtain solutions up to higher frequencies. Of course, it is also possible to speed up solution 
time by working with bigger computing power. 
 
The SAFE method is currently limited to range independent problems. However, it is possible to adapt the model 
to study range dependent problems, such as the scattering from hills and sound barriers. This can be achieved 
by mapping the normal modes onto a full (two dimensional) finite element based solution of the region surrounding 
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a range dependent feature, such as a hill or barrier. If the range dependent feature is relatively short in length 
when compared to the overall size of the problem, this should not significantly extend the solution time. This is 
because solution time is largely dominated by the solution of the eigenproblem to find the normal modes. This is 
especially true for items such as noise barriers, where mapping normal modes onto a small finite element discreti-
sation surrounding the barrier will incur minimal additional computational expenditure. Similar observations also 
apply to wind turbines, where one can develop a sophisticated computational model for the mechanisms of noise 
generation close to the wind turbine, and then map this on to the SAFE method in order to project solutions into 
the acoustic far field. Thus, the SAFE method presented here provides a route to the development of accurate 
predictions for complex noise propagation problems, where it is important to include all of the relevant atmospheric 
conditions. 
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